Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

In [3], El'kin posed the question whether there exists a regular maximal connected space whose topology is finer than the Euclidean topology ε on the set \mathbb{R} of real numbers. The same problem is mentioned by Pavlov ([12], Question 5) where many similar problems are presented in detail. Maximal connected spaces are studied in [2–11] and [13]. We note that the spaces constructed in [5] and [13] are Hausdorff maximal

The non-existence of a regular maximal connected expansion of the reals

A. Kalapodi^a, V. Tzannes^{b,*}

^a Research Academic Computer Technology Institute, University Campus of Patras, Patras 26504, Greece
^b Department of Mathematics, University of Patras, Patras 26504, Greece

ARTICLE INFO

Article history: Received 9 June 2016 Received in revised form 6 January 2017 Accepted 31 August 2017 Available online 6 September 2017

MSC: primary 54D05, 54D35

1. Introduction

Keywords: Regular maximal connected Submaximal Nearly maximal connected

ABSTRACT

We prove that there is no regular maximal connected expansion of the Euclidean topology ε on the set \mathbb{R} of real numbers. For this, we first consider a Hausdorff connected submaximal space (\mathbb{R}, τ) with $\varepsilon \subseteq \tau$ and then, with the aid of the filter of the τ -dense sets, we define two specific expansions σ, τ^* of ε , such that $\tau^* \subseteq \sigma, \tau^* \subseteq \tau$ and (\mathbb{R}, σ) is submaximal. We prove that if (\mathbb{R}, τ) is in addition nearly maximal connected, then $\sigma = \tau^*$. Finally we prove that (\mathbb{R}, τ) cannot be regular.

© 2017 Elsevier B.V. All rights reserved.

Definition 1.1. A Hausdorff space (X, τ) is called:

connected whose topologies are finer than ε .

(1) Maximal connected, if every topology strictly finer than τ is not connected.

* Corresponding author.

E-mail addresses: kalapodi@cti.gr (A. Kalapodi), tzannes@math.upatras.gr (V. Tzannes).

- (2) Nearly maximal connected ([2]), if (X, τ) is connected and for all regular open sets V and for all x in the boundary of V, there exists a neighborhood U_1 of x and an open non-empty set U_2 such that $U_1 \cap V \cap U_2 = \emptyset$ and $U_2 \cup \{x\}$ is closed.
- (3) Submaximal, if every dense subset is open.

Let (\mathbb{R}, τ) with $\varepsilon \subseteq \tau$ and let O be a τ -open neighborhood of $x \in \mathbb{R}$. We set $O^- = (-\infty, x) \cap O$ and $O^+ = (x, +\infty) \cap O$. As it is proved in [2], a connected space is maximal connected if and only if it is submaximal and nearly maximal connected. This result, in case of maximal connected space (\mathbb{R}, τ) with $\varepsilon \subseteq \tau$, implies that if U is a τ -open set such that $U \subseteq (x, +\infty)$ (resp. $U \subseteq (-\infty, x)$) and x is a τ -accumulation point of U, then $\{x\} \cup U$ is a τ -open neighborhood of x in the subspace $[x, +\infty)$ (resp. $(-\infty, x]$). It also implies that every connected set in ε remains connected in τ ([6], [7]). Obviously (by [2]) a regular maximal connected space is Hausdorff maximal connected.

In order to prove that there does not exist a regular maximal connected space whose topology is finer than ε , we first consider a Hausdorff connected submaximal space (\mathbb{R}, τ) with $\varepsilon \subseteq \tau$. Using the filter of τ -dense sets, we define two specific expansions σ, τ^* of ε , such that $\tau^* \subseteq \sigma, \tau^* \subseteq \tau$ and (\mathbb{R}, σ) is submaximal. Then, if in addition (\mathbb{R}, τ) is nearly maximal connected (hence (\mathbb{R}, τ) is Hausdorff maximal connected), we prove that $\sigma = \tau^*$. Finally, if (\mathbb{R}, τ) is in addition regular, we prove that this leads to a contradiction.

2. The spaces (\mathbb{R}, σ) and (\mathbb{R}, τ^*)

Let (\mathbb{R}, τ) be a Hausdorff connected submaximal space with $\varepsilon \subseteq \tau$. The set \mathcal{L} of τ -dense sets is a maximal filter on this set. Obviously \mathcal{L} is a filter on the set of ε -dense sets. We expand the filter \mathcal{L} to a maximal filter \mathcal{D} on the set of ε -dense sets and we set $\sigma = \langle \varepsilon \cup \mathcal{D} \rangle$.

Lemma 2.1. The space (\mathbb{R}, σ) has the following properties:

- (1) $\varepsilon \subseteq \sigma$.
- (2) It is Hausdorff connected submaximal.
- (3) Every τ -dense set is σ -dense.
- (4) Every τ -closed and τ -discrete set is σ -closed and σ -discrete.
- (5) If D is σ -dense, then the set $Int_{\tau}D$ is also σ -dense.

Proof. (1) It is obvious.

- (2) The topology σ is obtained by adjoining a maximal filter \mathcal{D} of ε -dense sets, hence (\mathbb{R}, σ) is Hausdorff connected submaximal ([1], [5]).
- (3) It follows from the fact that $\mathcal{L} \subseteq \mathcal{D}$.
- (4) Let M be a τ-closed and τ-discrete set. Since (ℝ, τ) is connected, no point of M or of ℝ\M is τ-isolated. Hence the set ℝ \ M is τ-open and τ-dense. By the previous property (3), the set ℝ \ M is σ-dense and σ-open because (ℝ, σ) is submaximal. Therefore M is σ-closed and σ-discrete.
- (5) First we observe that if $Int_{\tau}D = \emptyset$ then D is τ -closed and τ -discrete, hence by the previous property (4) it is also σ -closed and σ -discrete. Since the set $\mathbb{R} \setminus D$ is also σ -closed and σ -discrete it follows that the space (\mathbb{R}, σ) is discrete, which is impossible because it is connected. Hence $Int_{\tau}D \neq \emptyset$. The set $D \setminus Int_{\tau}D$ is τ -closed and τ -discrete. Again, by property (4), it is also σ -closed and σ -discrete. Hence the set $(D \setminus Int_{\tau}D) \cup (\mathbb{R} \setminus D)$ is σ -closed and σ -discrete. Therefore the set $Int_{\tau}D$ is σ -dense. \Box

Although the topologies τ and σ are not comparable, we can define another topology τ^* which is weaker than both of them. We observe at first that the set $Int_{\tau}\mathcal{D} = \{Int_{\tau}D \mid D \text{ is } \sigma\text{-dense}\}$ is a base for a topology consisting of sets $\sigma\text{-dense}$, $\varepsilon\text{-dense}$ and $\tau\text{-open}$. Obviously $\mathcal{L} \subseteq Int_{\tau}\mathcal{D}$. We set $\tau^* = \langle \varepsilon \cup Int_{\tau}\mathcal{D} \rangle$. Download English Version:

https://daneshyari.com/en/article/5777693

Download Persian Version:

https://daneshyari.com/article/5777693

Daneshyari.com