

Contents lists available at ScienceDirect Topology and its Applications www.elsevier.com/locate/topol

On conjugates and adjoint descent

Asaf Horev^{*}, Lior Yanovski

ARTICLE INFO

ABSTRACT

Article history: Received 26 June 2017 Received in revised form 26 September 2017 Accepted 9 October 2017 Available online 10 October 2017 In this note we present an ∞ -categorical framework for descent along adjunctions and a general formula for classifying conjugates up to equivalence, which unifies several known formulae from different fields.

@ 2017 Published by Elsevier B.V.

Keywords: Descent Infinity categories Conjugates

1. Introduction

The notion of "conjugate objects" or "objects of the same genus" arises in many fields in mathematics: in commutative algebra as objects that become isomorphic after a field extension ([8]), in homotopy theory as spaces that have equivalent Postnikov truncations ([10]) and in group theory as nilpotent groups that have isomorphic localizations ([2]). Often, one also has a formula computing the set of conjugates of a given object. In the three examples mentioned above, those sets are given in terms of Galois cohomology, \lim^1 of a tower of groups and a double coset formula respectively.

The goal of this paper is twofold:

- A. To unify and generalize the examples above by giving an abstract ∞ -categorical definition of conjugates (Definition 1.2) and a general formula for classifying them (Theorem A).
- B. To prove a descent result which facilitates the construction of the above ∞ -categorical framework in many cases of interest (Theorem B and its dual, Corollary 1.3).

In what follows we always work in the setting of ∞ -categories¹ using heavily the results and terminology of [5]. In particular, **Cat**_{∞} is the ∞ -category of ∞ -categories (see [5, Definition 3.0.0.1]) and we use the

^{*} Corresponding author.

E-mail addresses: asaf.horev@mail.huji.ac.il (A. Horev), lior.yanovski@mail.huji.ac.il (L. Yanovski).

¹ Also known as 'quasi-categories' or 'weak Kan complexes'.

https://doi.org/10.1016/j.topol.2017.10.007 0166-8641/ \odot 2017 Published by Elsevier B.V.

symbols \varprojlim and \varinjlim for the (∞ -categorical) limit and colimit of a functor between ∞ -categories. We also denote by \mathcal{C}^{\simeq} the maximal ∞ -subgroupoid of an ∞ -category \mathcal{C} and we abuse notation by identifying ordinary categories with their nerves viewed as ∞ -categories.

For a general definition of conjugate objects, we first need to fix some notation. Let I be a simplicial set. An I-diagram of ∞ -categories is a map $I \to \mathbf{Cat}_{\infty}$, which we denote by \mathcal{D}_{\bullet} (where \mathcal{D}_a is the image of a vertex $a \in I$). A cone on \mathcal{D}_{\bullet} is an extension of the map $I \to \mathbf{Cat}_{\infty}$ to the cone I^{\triangleleft} . We denote such a cone by $\mathcal{C} \to \mathcal{D}_{\bullet}$, where \mathcal{C} is the image of the cone point. In this situation, by the universal property of the limit, we get a canonical functor $\mathcal{C} \to \varprojlim(\mathcal{D}_{\bullet})$. We call this the *comparison functor* of the cone. Now assume that we are in the following setting:

Setting 1.1. Let I be a simplicial set, \mathcal{D}_{\bullet} an I-diagram of ∞ -categories, and $\mathcal{C} \to \mathcal{D}_{\bullet}$ a cone. Denote by $F_a: \mathcal{C} \to \mathcal{D}_a$ the functor corresponding to the edge from the cone point to $a \in I$ and by $F: \mathcal{C} \to \varprojlim(\mathcal{D}_{\bullet})$ the comparison functor (see Fig. 1).

Fig. 1. A cone on an *I*-diagram of ∞ -categories and the comparison functor.

Given two objects $x, y \in C$ one can try to distinguish between them by comparing $F_a(x)$ and $F_a(y)$ in \mathcal{D}_a . If $F_a(x)$ and $F_a(y)$ fail to be equivalent for some $a \in I$, then clearly x and y can not be equivalent in C. Two objects x and y are called *conjugate* if they can't be distinguished in this way. More formally,

Definition 1.2. In the Setting 1.1, two objects x and y in \mathcal{C} will be called *conjugate* if there exist (not necessarily compatible) equivalences $F_a(x) \simeq F_a(y)$ for every index a in I. Let $\operatorname{Conj}(x) \subseteq \mathcal{C}^{\simeq}$ denote the full ∞ -subgroupoid of conjugates of x.

In addition, for every object x of an ∞ -category \mathcal{C} , we denote by $BAut(x) \subseteq \mathcal{C}^{\simeq}$ the full sub ∞ -groupoid spanned by the single object x (i.e. the maximal Kan subcomplex of the simplicial set \mathcal{C} supported on a single vertex x).

We explain the terminology as follows. By identifying ∞ -groupoids with spaces, we can think of BAut(x) as a connected space pointed by x. The loop space $\Omega BAut(x)$ is homotopy equivalent to the space $Aut(x) \subseteq Map_{\mathcal{C}}(x,x)$ of self-equivalences of x with the loop space structure corresponding to composition of maps. Thus, BAut(x) is the classifying space of Aut(x).²

With these definitions, our main results are:

Theorem A (Conjugates formula). In the Setting 1.1, if the comparison functor $F: \mathcal{C} \to \varprojlim(\mathcal{D}_{\bullet})$ is an equivalence, then it induces an equivalence of ∞ -groupoids:³

 $^{^{2}}$ In the equivalent context of topological categories, this is precisely [5, Remark 1.2.5.2].

³ Note that the ∞ -limit of ∞ -groupoids corresponds to the homotopy limit of spaces under the identification of the ∞ -categories of ∞ -groupoids and spaces.

Download English Version:

https://daneshyari.com/en/article/5777700

Download Persian Version:

https://daneshyari.com/article/5777700

Daneshyari.com