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cone over a locally connected curve X not being a local dendrite in terms of that
of X. Using the result of Pellicer-Covarrubias and Santiago-Santos, it gives us a
formula for the homogeneity degree of the cone over any locally connected curve X.
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1. Introduction

Let X be a topological space. The cone of X is the quotient space
Cone(X) =X xI/X x {1}.

Let H(X) denote the group of autohomeomorphisms of X. Given x € X, we denote by Ox(x) the orbit
of 2 under the action of H(X) on X:

Ox(xz) ={h(z): heH(X)}.
We say that X is %—homogeneous provided that X has exactly n orbits. The homogeneity degree of X is n

(in symbols d (X) = n) if X is 1-homogeneous.
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The homogeneity degree has been studied recently in many papers, (see e.g. [3], [4], and [7-10]).

By a(X) we denote the points of X having a neighbourhood homeomorphic to the Euclidean space E™,
by B(X) — the points of X \ a(X) having a neighbourhood homeomorphic to the half Euclidean space.

The main theorem of this note reads as follows:

Theorem 1. Let us assume that X is a locally connected curve not being a local dendrite. If dp (X) is finite
and k is the number of orbits of X contained in 3(X), then dg(Cone(X)) = 2dg(X)+1—2k. If dg(X) is
infinite then dpg(X) = dpg(Cone(X)).

For every n € N, let T, and ©,, denote the cone and suspension over an n-point set, respectively. A hairy
point F,, is the union of arcs A;, i € N, such that diamA; — 0 and A, N A; = {a}, for all i # j € N.

In [10], Pellicer-Covarrubias and Santiago-Santos determined the homogeneity degree of the cones over
local dendrites in terms of that of X. More precisely, they proved the following result:

Theorem 2. Let X be a local dendrite.

1) If X is a simple closed curve or X € {F,}U{T, :n € N\ {1,2}} then dg(Cone(X)) = dy(X) + 1.

2) If X €{6,, :n e N\ {1,2}} then dg(Cone(X)) =dpu(X)+2=14.

3) If dg(X) is infinite or X is an arc, then dg(Cone(X)) = dgy (X).

4) In all other cases, dy(Cone(X)) = 2dy(X) + 1 — 2k, where k is the number of orbits of X contained in
BX).

A~~~

By Theorems 1 and 2, we obtain a formula for the homogeneity degree of the cone over X in terms of
that of X, for X being any locally connected curve.

The proofs of the main lemmas in this paper involve techniques and ideas developed in [1] and employ
the notation of isotopic components. This part of our work is contained in Section 3.

Section 4 contains the proof of Theorem 1.

Using similar tools the author gives in [6] a formula for the homogeneity degree of the suspension over a
locally connected curve X not being a local dendrite in terms of that of X.

2. Notation and tools

Our terminology follows [2]. All spaces are assumed to be metric. A curve is a 1-dimensional continuum.
A dendrite is a curve being AR.
In [5] (see Lemma 5.1 on the page 43), the author proved the following result.

Lemma 1. If C' and C’ are locally connected curves not being local dendrites and h: Cone(C) — Cone(C")
is a homeomorphism then h maps the vertex of Cone(C') onto the vertex of Cone(C”).

Remark 1. ([10], Lemma 3.0.6) Let X be a topological space. If A is contained in an orbit of X, then
A x (0,1) and A x {0} are contained in orbits of Cone(X).

Using the remark above we obtain:

Lemma 2. Let X be a locally connected curve not being a local dendrite and let OCOM(X)(;B7 t) be an orbit of
Cone(X) different from that of the vertex. Then

Ox(z) x {0} C Ocone(x)(x,t), for t =0,
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