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We show two metric continua X and Z and a monotone surjective mapping f :
X → Z such that the Jones’ function T is continuous for X, but it is not continuous 
for Z. This answers a question by D. P. Bellamy.
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1. Introduction

A continuum is a nonempty compact connected metric space. Given a continuum X, we consider the 
hyperspaces:

2X = {A ⊂ X : A is closed and nonempty},

C(X) = {A ∈ 2X : A is connected},

F1(X) = {{x} ∈ 2X : x ∈ X}.
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These hyperspaces are endowed with the Hausdorff metric H ([5, Definition 2.1]).
Given A ⊂ X, let

T (A) = {p ∈ X : for each M ∈ C(X) with p ∈ intX(M), M ∩A �= ∅}.

If p ∈ X, we write T (p) instead of T ({p}). If necessary, we write TX instead of T .
In [6], F. B. Jones introduced the function T , this function has been used to study a number of properties 

on continua.
The function T is continuous for X provided that its restriction T |2X : 2X → 2X is continuous. The 

continuum X is T -additive if T (A) ∪ T (B) = T (A ∪B) for every A, B ∈ 2X .
In [1], D. P. Bellamy, studied properties that can deduced from the continuity of the function T .
It is easy to show that if X is a locally connected continuum, then T |2X is the identity, so T is continuous 

for X.
If X is an indecomposable continuum, then T (A) = X for each A ⊂ X, so T is continuous for X.
In [2, Remark 2, p. 10], D. P. Bellamy remarked that if X is the circle of pseudo-arcs, then T is continuous 

for X.
W. Lewis proved ([8]) that for each curve (1-dimensional continuum) M , there exists the respective 

curve XM of pseudo-arcs. That is, XM is a curve that has a terminal continuous decomposition into 
pseudo-arcs such that the decomposition space is homeomorphic to M . In [10], it was observed that if 
X is a locally connected curve of pseudo-arcs, then T is continuous for X.

So, we have the following families of continua for which T is continuous:

(a) locally connected continua,
(b) indecomposable continua,
(c) the locally connected curves of pseudo-arcs, and
(d) the monotone images of locally connected curves of pseudo-arcs (see Theorem 2.3 below).

As we can see, there are only few continua for which it is known that T is continuous. Observing these 
examples, one can see that the following problems by D. P. Bellamy are very natural.

Problem 1.1 ([3, Problem 161]). If T is continuous for X, is it true that X is T -additive?

Problem 1.2 ([3, Problem 162]). If T is continuous for X, is it true that the collection {T (p) : p ∈ X} is a 
continuous decomposition of X such that the quotient space is locally connected?

Problem 1.3 ([3, Problem 163]). If T is continuous for X and there is a point p in X such that T (p), has 
nonempty interior, is X indecomposable?

Problem 1.4 ([7, 155]). If TX is continuous for X and f : X → Z is a monotone surjection, is it true that 
TZ is continuous for Z?

In this paper we show some relationships among Problems 1.1–1.4 and we give a negative answer to 
Problem 1.4, by giving a continuum X for which TX is continuous such that X contains an arc L with the 
property that if Z = X/L is the space obtained by shrinking L to a point, then TZ is not continuous for Z.

2. Relationships

A mapping is a continuous function. Given a continuum X, p ∈ X, A ⊂ X and ε > 0, let B(p, ε) denote 
the open ε-ball around p and N(A, ε) is the union of all the ε-balls around points of A. The continuum X
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