Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

A study on symmetric products of generalized metric spaces $\stackrel{\star}{\approx}$

Liang-Xue Peng^{*}, Yuan Sun

ARTICLE INFO

Article history: Received 4 December 2016 Received in revised form 20 September 2017 Accepted 30 September 2017 Available online 3 October 2017

MSC: 54B20 54D20

 $\begin{array}{l} Keywords:\\ {\rm Open}\;(G)\\ {\rm Point-countable base}\\ {\rm Semi-stratifiable}\\ k-{\rm Semistratifiable}\\ {\rm Hyperspace}\\ cs-{\rm Network}\\ {\rm Paracompact}\;p-{\rm space}\\ M_1-{\rm Space} \end{array}$

0. Introduction

There are many results on the hyperspace 2^X of nonempty closed subsets of a topological space X equipped with various topologies. Various subsets of 2^X are also widely studied. The following notations and notions follow from [21] and [12]. Given a space X, we define its hyperspaces as the following sets:

 $2^X = \{A \subset X : A \text{ is closed and nonempty}\},\$

 $\mathcal{C}(X) = \{A \in 2^X : A \text{ is compact}\},\$

 $\mathcal{F}_n(X) = \{A \in 2^X : A \text{ has at most } n \text{ points}\}, \text{ where } n \text{ is a positive integer},$

 $\mathcal{F}(X) = \{ A \in 2^X : A \text{ is finite} \}.$

 2^{X} is topologized by the *Vietoris topology* defined as the topology generated by $\mathcal{B} = \{\langle U_1, \ldots, U_k \rangle : U_1, \ldots, U_k \text{ are open subsets of } X, k \text{ is a positive integer} \}$, where $\langle U_1, \ldots, U_k \rangle = \{A \in 2^X : A \subset \bigcup_{i=1}^k U_i \text{ and } U_i \}$

* Corresponding author.

https://doi.org/10.1016/j.topol.2017.09.036

ABSTRACT

We study the relation between a space X satisfying certain generalized metric properties (for example, open (G), point-countable base, Collins–Roscoe property, semi-stratifiable, k-semistratifiable, semi-metrizable, scattered, point-countable cs-network, every compact set is metrizable) and its n-fold symmetric product $\mathcal{F}_n(X)$ satisfying the same properties. We also show that if X is an M_1 -space then $\mathcal{F}(X)$ is an M_1 -space, where $\mathcal{F}(X)$ is the hyperspace of finite subsets of X. A space X is a paracompact p-space if and only if its 2-fold symmetric product $\mathcal{F}_2(X)$ is a paracompact p-space. A Tychonoff space X is a Lindelöf Σ -space if and only if its 2-fold symmetric product $\mathcal{F}_2(X)$ is a Lindelöf Σ -space.

© 2017 Elsevier B.V. All rights reserved.

^{*} Research supported by the National Natural Science Foundation of China (Grant No. 11771029) and supported by Beijing Natural Science Foundation (Grant No. 1162001).

E-mail addresses: pengliangxue@bjut.edu.cn (L.-X. Peng), sy121690@126.com (Y. Sun).

^{0166-8641/© 2017} Elsevier B.V. All rights reserved.

 $A \cap U_j \neq \emptyset$ for each $j \in \{1, \ldots, k\}\}$. The topology on 2^X which is generated by \mathcal{B} is also called the *finite* topology [21, Definition 1.7]. Note that, by definition, $\mathcal{C}(X)$, $\mathcal{F}_n(X)$ and $\mathcal{F}(X)$ are subsets of 2^X . Hence, they are topologized with the appropriate restriction of the Vietoris topology. $\mathcal{F}_n(X)$ is called the *n*-fold symmetric product of X [12] and $\mathcal{F}(X)$ is called the hyperspace of finite subsets of X [23, Abstract].

The following summary on results of $\mathcal{F}_n(X)$ is taken from [12, page 94]. The *n*-fold symmetric product $\mathcal{F}_n(X)$ of a space X, originally defined in 1931 by Borsuk and Ulam [5] is the quotient of X^n formed by the quotient map $(x_1, x_2, \ldots, x_n) \mapsto \{x_1, x_2, \ldots, x_n\}$. If X is a Hausdorff space and n is a positive integer, then $\mathcal{F}_n(X)$ is a closed subset of 2^X and the union of all symmetric products of X is the subspace $\mathcal{F}(X)$, which is dense in 2^X .

Mizokami presents a survey of results relating a generalized metric property of a space X with the hyperspace $\mathcal{C}(X)$ and $\mathcal{F}(X)$ [23]. In [12], Good and Macías studied symmetric products of generalized metric spaces. They considered several generalized metric properties and studied the relation between a space X satisfying such property and its *n*-fold symmetric product satisfying the same property.

In this note, we also study the relation between a space X satisfying certain generalized metric properties (for example, open (G), point-countable base, Collins-Roscoe property, regular G_{δ} -diagonal, semistratifiable, k-semistratifiable, semi-metrizable, scattered, point-countable cs-network, every compact set is metrizable) and its n-fold symmetric product satisfying the same properties. We also show that if X is an M_1 -space then $\mathcal{F}(X)$ is an M_1 -space. A space X is a paracompact p-space if and only if its 2-fold symmetric product $\mathcal{F}_2(X)$ is a paracompact p-space. A Tychonoff space X is a Lindelöf Σ -space if and only if its 2-fold symmetric product $\mathcal{F}_2(X)$ is a Lindelöf Σ -space.

All the spaces in this note are assumed to be Hausdorff. The set of all positive integers is denoted by \mathbb{N} and ω is $\mathbb{N} \cup \{0\}$. Notations and terminology we follow [10] and [12].

1. On the n-fold symmetric product of a space

If $n \in \mathbb{N}$ and $\{U_i : 1 \leq i \leq n\}$ is a collection of subsets of a topological space X, then $\langle U_1, \ldots, U_n \rangle$ denotes $\{A \in 2^X : A \subset \bigcup_{i=1}^n U_i \text{ and } A \cap U_i \neq \emptyset \text{ for each } i \in \{1, \ldots, n\}\}.$

Remark 1. ([12, Remark 2.1]) Let X be a space and let n be an integer greater than or equal to two. Note that $\mathcal{F}_1(X)$ is closed in $\mathcal{F}_n(X)$ and $\xi : \mathcal{F}_1(X) \twoheadrightarrow X$ given by $\xi(\{x\}) = x$ is a homeomorphism.

The following notations are also taken from [12].

Notation 2. ([12, Notation 2.2]) Let X be a space and let n be a positive integer. To simplify notation, if U_1, \ldots, U_s are open subsets of X, then $\langle U_1, \ldots, U_s \rangle_n$ denotes the intersection of the open set $\langle U_1, \ldots, U_s \rangle$ of the Vietoris Topology, with $\mathcal{F}_n(X)$.

Notation 3. ([12, Notation 2.3]) Let X be a space and let n be a positive integer. If $\{x_1, \ldots, x_r\}$ is a point of $\mathcal{F}_n(X)$ and $\{x_1, \ldots, x_r\} \in \langle U_1, \ldots, U_s \rangle_n$, then for each $j \in \{1, \ldots, r\}$, we let $U_{x_j} = \bigcap \{U \in \{U_1, \ldots, U_s\} : x_j \in U\}$.

Observe that $\langle U_{x_1}, \ldots, U_{x_r} \rangle_n \subset \langle U_1, \ldots, U_s \rangle_n$ [21, 2.3.1].

In [8, page 637], Collins and Roscoe introduce the following condition:

(G) for each $x \in X$, there is assigned a countable collection $\mathcal{G}(x)$ of subsets of X such that, whenever $x \in U, U$ open, there is an open set V(x, U) with $x \in V(x, U) \subset U$ such that whenever $y \in V(x, U)$ then $x \in N \subset U$ for some $N \in \mathcal{G}(y)$.

If a space X satisfies (G), then X is said to have the Collins-Roscoe property [26, Definition 2.1]. If X satisfies (G) and every element of $\mathcal{G}(x)$ is open in X for each $x \in X$, then X is said to satisfy open (G) [7, page 241].

Download English Version:

https://daneshyari.com/en/article/5777730

Download Persian Version:

https://daneshyari.com/article/577730

Daneshyari.com