Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Virtual Special Issue – In honor of Professor Yukihiro Kodama on his 85th birthday

Insertion of poset-valued maps with the way-below and -above relations

Kaori Yamazaki¹

Faculty of Economics, Takasaki City University of Economics, 1300 Kaminamie, Takasaki, Gunma 370-0801, Japan

ARTICLE INFO

Article history: Received 30 July 2016 Received in revised form 31 March 2017 Accepted 3 April 2017 Available online 29 September 2017

MSC: 06B3554C0354D15 54D20 Keywords: Insertion Semi-continuous Poset Bicontinuous Lattice Way below Way above Countably paracompact Normal Paracompact Dowker-Katětov insertion theorem Bi-Scott topology

1. Introduction

Bi-bounded complete

Throughout this paper, let \mathbb{R} be the set of all real numbers, \mathbb{N} the set of all natural numbers, and κ an infinite cardinal. All topological spaces are assumed to be T_1 -spaces.

E-mail address: kaori@tcue.ac.jp.

ABSTRACT

In this paper, with the way-below relation \ll and the way-above relation \ll_d , we give a poset-valued insertion theorem by a pair of semi-continuous maps. Moreover, we show a poset-valued insertion theorem by a continuous map as follows: Let X be a paracompact Hausdorff space, P a bi-bounded complete, bicontinuous, pathwise connected, topological poset. For each upper semi-continuous map $f: X \to P$ with a lower bound and each lower semi-continuous map $g: X \to P$, if $\langle f, g \rangle$ has interpolated points pointwise, there exists a continuous map $h: X \to P$ such that $f \ll_d h \ll g$. A generalized Dowker–Katėtov's insertion theorem, by using the way-below and -above relations on bicontinuous posets P, is also given.

 $\ensuremath{\textcircled{}}$ 2017 Elsevier B.V. All rights reserved.

¹ Supported by KAKENHI (No. 23540100).

Katětov-Tong's insertion theorem ([10], [15]) shows that a topological space X is normal if and only if for each upper semi-continuous function $f: X \to \mathbb{R}$ and each lower semi-continuous function $g: X \to \mathbb{R}$ with $f \leq g$ there exists a continuous function $h: X \to \mathbb{R}$ such that $f \leq h \leq g$. Another classical insertion theorem, Dowker-Katětov's insertion theorem ([2], [10]), says that a topological space X is normal and countably paracompact if and only if for each upper semi-continuous function $f: X \to \mathbb{R}$ and each lower semi-continuous function $g: X \to \mathbb{R}$ with f < g there exists a continuous function $h: X \to \mathbb{R}$ such that f < h < g. Here, for maps $f, g: X \to \mathbb{R}$, the symbol $f \leq g$ (resp. f < g) stands for $f(x) \leq g(x)$ (resp. f(x) < g(x)) for every $x \in X$. Various extensions of Katětov-Tong's and Dowker-Katětov's insertion theorems are known. For maps to Banach lattices and ordered topological vector spaces, see [1], [9], [14], [16], [17] and [18]. On the other hand, various important insertion theorems had been given in case that

the range Y of maps are not necessarily vector spaces. See [19] for complete chains Y, [4] for LOTS Y, [8] and [12] for continuous lattices or quasi-uniform spaces Y, [13] for completely distributive lattices Y, [6] for lattices or a hedgehog Y, and [7] for bounded complete domains Y, etc.

In this paper, we provide new insertion theorems for maps with values in bi-bounded complete and bicontinuous posets, which are not necessarily vector spaces or lattices, by using the way-below relation \ll and the way-above relation \ll_d . The way-below and -above relations \ll and \ll_d are quite fundamental and useful for the study of order theory, topology, category theory and computer sciences, etc (see [5], [11] etc.).

In Section 2, we give preliminary facts and definitions. A lattice L endowed with a topology is said to be a *topological lattice* if the meet operation $\langle x, y \rangle \mapsto x \wedge y$ and the join operation $\langle x, y \rangle \mapsto x \vee y$; $L \times L \to L$, are continuous ([5]). Arranging this notion to a poset endowed with a topology, we introduce a new notion called a topological poset and give its basic property in Section 2.

Various definitions of lower and upper semi-continuity of maps $f : X \to P$ from a topological space X into a poset P are known. In Section 3, among them, we adopt the familiar definition by using $f = f_*$ and $f = f^*$, where a similar definition by using $f = f_*$ for maps with valued in bounded complete domains was formulated by Gutiérrez García, Kubiak and de Prada Vicente [7]. We also describe lower or upper semi-continuity with the way-below and way-above relations \ll and \ll_d .

In Section 4, we give insertion theorems by a pair of upper and lower semi-continuous maps. We call a poset *P* lower-bounded complete (resp. upper-bounded complete) if every non-empty subset *A* of *P* with a lower bound (resp. an upper bound) has the inf (resp. sup). When *P* is lower-bounded complete and upper-bounded complete, we call *P* bi-bounded complete. Note that every bounded complete domain in the sense of [5] is bi-bounded complete. For maps $f, g: X \to P$ into a poset *P*, the symbol $f \ll g$ (resp. $f \ll_d g$, $f \leq g$) stands for $f(x) \ll g(x)$ (resp. $f(x) \ll_d g(x)$, $f(x) \leq g(x)$) for each $x \in X$. For a point *z* and a pair of points $\langle y, y' \rangle$ of a poset *P*, *z* is an interpolated point of $\langle y, y' \rangle$ if $y \ll_d z \ll y'$. A pair $\langle f, g \rangle$ of maps $f, g: X \to P$ has interpolated points pointwise if $\langle f(x), g(x) \rangle$ has an interpolated point for each $x \in X$.

Theorem 1.1. Let X be a paracompact Hausdorff space, and P a bi-bounded complete, bicontinuous poset. For each upper semi-continuous map $f: X \to P$ and each lower semi-continuous map $g: X \to P$, if $\langle f, g \rangle$ has interpolated points pointwise, there exist an upper semi-continuous map $u: X \to P$ and a lower semi-continuous map $\ell: X \to P$ such that $f \ll_d \ell \leq u \ll g$.

When a poset P is a topological space, we give another insertion theorem by using continuous maps as follows.

Theorem 1.2. Let X be a paracompact Hausdorff space, P a bi-bounded complete, bicontinuous, pathwise connected, topological poset. For each upper semi-continuous map $f: X \to P$ with a lower bound \perp_f and each lower semi-continuous map $g: X \to P$, if $\langle f, g \rangle$ has interpolated points pointwise, there exists a continuous map $h: X \to P$ such that $f \ll_d h \ll g$.

Download English Version:

https://daneshyari.com/en/article/577744

Download Persian Version:

https://daneshyari.com/article/5777744

Daneshyari.com