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It is well known that the finite product of locally connected curves has the 
decomposition uniqueness property. It is natural to ask whether the same holds for 
infinite products. In general, this isn’t the case – the Hilbert cube is homeomorphic 
to the countable infinite product of triods. We prove that if X is a product of locally 
connected curves then X has the decomposition uniqueness property if only finitely 
many of the factors are locally dendrites. The last condition is not necessary. It has 
been shown by Eberhart that the infinite torus has the decomposition uniqueness 
property.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

A space X is called prime if it is not homeomorphic to the Cartesian product of two spaces, each of them 
containing at least two points. Decomposing a space into Cartesian prime factors is, in general, not unique. 
For example, the products [0, 1] × [0, 1) and [0, 1) × [0, 1) are homeomorphic, but their respective factors 
aren’t. The decomposition uniqueness does not hold in the compact case either. Borsuk [3] has constructed 
a countable family of different continua {Xi}i∈N such that Xi × I are homeomorphic for every i ∈ N.

There are a few affirmative results on the decomposition uniqueness into 1-dimensional factors. Recently, 
the author [14] has proved that the decomposition into a finite Cartesian product of locally connected curves 
is unique. On the other hand, Cauty [4] proved that every homeomorphism of a finite product of locally 
connected curves with sufficiently many circles is a homeomorphism product up to a permutation of the 
factors.
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It is well known that the Hilbert cube is homeomorphic to the countable infinite product of triods (see [1]). 
Thus, it is natural to ask whether the infinite product of more complicated curves, for instance, Menger-like 
curves, satisfies the decomposition uniqueness property.

The main theorem of this note reads as follows:

Theorem 1. Let X be a product of locally connected curves. If only a finite number of the factors are local 
dendrites, then X has the decomposition uniqueness property.

An important step toward proving our theorem is Theorem 2 due to Kennedy [12], which generalizes the 
result of Cauty [4] (see also [13] and [11]). Its statement is situated in Section 3.

The another ingredient is the concept of stable and labile points used previously in [10] and [15] and the 
idea of elementary sets in Cartesian products. This part of our work is contained in Section 4; here, the main 
result is Theorem 3, which was independently proved by the author and Furdzik [10]. The Theorem 3 is a 
natural generalization of the earlier results from [9] and [14]. The proof of Theorem 3 presented in Section 4
makes use of some ideas from [9] and [10], but in a simpler setting. The some tools were also used in [15]. 
More general version of Theorem 3 can be found in [5].

Finally, Section 5 contains the proof of Theorem 1.

2. Notation and tools

Our terminology follows that of [7] and [8].
If X =

∏
i∈A Xi then, for every i ∈ A, the map pXi

: X → Xi is the natural projection onto Xi and, for 
every x ∈ X, let xn = pXn

(x). For every (xj)j∈A\{i} ∈
∏

j∈A\{i} Xj , the map

ri(xj)j∈A\{i}
: Xi → X

is defined by the formula

ri(xj)j∈A\{i}
(z) := (yj)j∈A,

where

yj :=
{

xj for j ∈ A \ {i}
z for j = i

A continuous mapping h : X × I → X is a homotopic deformation if h(x, 0) = x for every x ∈ X.

Definition 1. A point x ∈ X is stable if, for every homotopic deformation h of the space X, we have 
h(x, 1) = x. A point x ∈ X is labile, if for every y ∈ X, there exists a homotopic deformation hy of the 
space X such that hy(x, 1) = y.

We will denote the set of stable points by S(X) and the set of labile points by R(X).

Definition 2. Let z ∈ X. By zX we denote the set of points x ∈ X such that, there exists a homotopic 
deformation h of the space X satisfying h(z, 1) = x.

Remark 1. Using the definitions of the sets S(X) and R(X), it is easy to prove:

(1) The set S(X) consists of the points x ∈ X such that xX = {x},
(2) The set R(X) consists of the points x ∈ X such that xX = X.
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