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1. Introduction

A space X is called prime if it is not homeomorphic to the Cartesian product of two spaces, each of them
containing at least two points. Decomposing a space into Cartesian prime factors is, in general, not unique.
For example, the products [0,1] x [0,1) and [0,1) x [0,1) are homeomorphic, but their respective factors
aren’t. The decomposition uniqueness does not hold in the compact case either. Borsuk [3] has constructed
a countable family of different continua {X;};en such that X; x I are homeomorphic for every ¢ € N.

There are a few affirmative results on the decomposition uniqueness into 1-dimensional factors. Recently,
the author [14] has proved that the decomposition into a finite Cartesian product of locally connected curves
is unique. On the other hand, Cauty [4] proved that every homeomorphism of a finite product of locally
connected curves with sufficiently many circles is a homeomorphism product up to a permutation of the
factors.
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It is well known that the Hilbert cube is homeomorphic to the countable infinite product of triods (see [1]).
Thus, it is natural to ask whether the infinite product of more complicated curves, for instance, Menger-like
curves, satisfies the decomposition uniqueness property.

The main theorem of this note reads as follows:

Theorem 1. Let X be a product of locally connected curves. If only a finite number of the factors are local
dendrites, then X has the decomposition uniqueness property.

An important step toward proving our theorem is Theorem 2 due to Kennedy [12], which generalizes the
result of Cauty [4] (see also [13] and [11]). Its statement is situated in Section 3.

The another ingredient is the concept of stable and labile points used previously in [10] and [15] and the
idea of elementary sets in Cartesian products. This part of our work is contained in Section 4; here, the main
result is Theorem 3, which was independently proved by the author and Furdzik [10]. The Theorem 3 is a
natural generalization of the earlier results from [9] and [14]. The proof of Theorem 3 presented in Section 4
makes use of some ideas from [9] and [10], but in a simpler setting. The some tools were also used in [15].
More general version of Theorem 3 can be found in [5].

Finally, Section 5 contains the proof of Theorem 1.

2. Notation and tools
Our terminology follows that of [7] and [8].

If X = Hz‘eA
every ¥ € X, let @, = px,, (). For every (z;)jea\(i} € []ea (s X, the map

X then, for every ¢ € A, the map px,: X — X; is the natural projection onto X, and, for

X, — X

7 .
(zj)jear(iy *
is defined by the formula
rzzj)jeA\{,y} (Z) = (yj)jEAa
where
{a:j for je A\ {i}
Yj = .
z for j=i
A continuous mapping h: X x I — X is a homotopic deformation if h(x,0) = z for every = € X.

Definition 1. A point x € X is stable if, for every homotopic deformation h of the space X, we have
h(z,1) = z. A point & € X is labile, if for every y € X, there exists a homotopic deformation h, of the
space X such that hy(z,1) = y.

We will denote the set of stable points by S(X) and the set of labile points by R(X).

Definition 2. Let z € X. By 2¥ we denote the set of points z € X such that, there exists a homotopic
deformation h of the space X satisfying h(z,1) = z.

Remark 1. Using the definitions of the sets S(X) and R(X), it is easy to prove:

(1) The set S(X) consists of the points z € X such that 2% = {z},
(2) The set R(X) consists of the points z € X such that z%¥ = X.
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