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Generalised inverse limits of compacta were introduced by Ingram and Mahavier in 
2006. The main difference between ordinary inverse limits and their generalised 
cousins is that the former concerns diagrams of singlevalued functions while 
the latter permits multivalued functions. However, generalised inverse limits are 
not merely limits in the Kleisli category of a hyperspace monad, a fact that 
independently motivated each of the authors of this article to come up with the 
same formalism which restores the link with category theory through the concept of 
Mahavier limit of an order diagram in an order extension of a category B. Mahavier 
limits of diagrams in B coincide with ordinary limits in B, and so Mahavier limits 
are an extension of ordinary limits along the functor that views an ordinary diagram 
as a diagram in the extension. Within that context it is natural to consider Mahavier 
completeness, namely when all small diagrams admit Mahavier limits, as well as 
classifying diagrams, namely the existence of a right adjoint to the mentioned 
functor on diagrams. In this work we show that these two conditions are equivalent, 
and we study some of the properties of classifying diagrams and of the adjunction.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Generalised inverse limits of compacta were introduced by Ingram and Mahavier in 2006 in [1] and have 
since received much attention (e.g., [2–24]). Recall that an inverse limit of a sequence

· · · Xn+1 Xn · · · X2 X1
fn fn−1 f1
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of spaces and continuous functions is the space X = {x ∈
∏

Xn | xn = fn(xn+1)}, viewed as a subspace 
of the product space. The passage to generalised inverse limits occurs by allowing the bonding functions 
fn : Xn+1 → Xn to be upper semicontinuous set-valued functions fn : Xn+1 � Xn, and by altering the 
definition of the space X to become X = {x ∈

∏
Xn | xn ∈ fn(xn+1)}. The formal resemblance to inverse 

limits makes the generalised version very palatable. The hoard of interesting spaces that arise as generalised 
inverse limits of very simple diagrams with multivalued bonding functions of compacta (see [11,25] for 
detailed examples), together with highly non-trivial ramification of the subtle change in definition from 
singlevaluedness to multivaluedness, and from equality to membership, contribute even more to the appeal 
of this relatively new area of research.

Of course, inverse limits of spaces are nothing but categorical limits in the category Top of topological 
spaces and continuous mappings, and it is natural to ask whether the slogan generalises. Results addressing 
some categorical aspects of generalised inverse limits directly can be found in [4,26], but they were only 
partially successful in fully restoring the link with category theory, and the difficulty can be traced to the 
following phenomenon. Consider the functor T : Top → Top which maps a space X to T (X), the space of 
all subsets of X, endowed with the upper Vietoris topology. This hyperspace functor has a natural structure 
of a monad whose multiplication is given by taking unions. Let TopT be the Kleisli category of T , i.e., the 
objects of TopT are all spaces and a morphism X � Y is a continuous function X → T (Y ). It is easily seen 
that these are precisely the upper semicontinuous functions. In other words, the diagrams for generalised 
inverse limits of spaces are precisely diagrams in TopT . However, generalised inverse limits in Top are not 
simply limits in TopT (an expected reality since limits in Kleisli categories are notoriously ill-behaved ([27]), 
while generalised inverse limits are much more tame).

The authors of this article independently found the same categorical formalism to fully restore the link 
between generalised inverse limits of spaces and category theory. In [18] the first named author developed 
a notion of limit in the category of compacta and upper semicontinuous set-valued functions in such a way 
that the slogan above is recovered. In [28] the second named author developed a formalism in full generality, 
allowing for generalised inverse limits to be considered beyond the scope of topology, which specialises to 
generalised inverse limits of spaces when interpreted in the context of Top ⊆ TopT .

The aim of this work is summarised in the diagram

[D ,B] [D ,C ]B

B

lim←−−

iD

i∗D

lim←−−
M
B

Δ

iD◦Δ

which we briefly explain (all concepts are detailed below). Let B, C , and D be categories (with D small), 
assume that B is a subcategory of C , that ob(B) = ob(C ), and moreover that each hom-set in C is 
endowed with an ordering, with some conditions. We call C an order extension of B. The ordering allows 
one to define order variants of functors and of natural transformations by suitably replacing = by ≤. One 
obtains in this way the category [D , C ] of all order functors D → C and order natural transformations 
between them. An order natural transformation whose components are morphisms in B is said to be an 
order natural transformation relative to B, and we then denote by [D , C ]B the subcategory of [D , C ]
obtained by restricting to the relative order natural transformations. Let [D , B] be the usual category of 
functors D → B and natural transformations. Since B is a subcategory of C there is an inclusion functor 
iD : [D , B] → [D , C ]B, depicted at the top of the diagram above. On the left side of the diagram are the 
diagonal functor Δ: B → [D , B], mapping an object B to the constantly B functor, and its right adjoint, 
the functor lim←−−, namely taking limits, provided D-shaped limits in B exist, e.g., if B is complete.
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