Monotone and weakly confluent set-valued functions and their inverse limits

James P. Kelly
Department of Mathematics, Christopher Newport University, 1 Avenue of the Arts, Newport News, VA 23606, USA

A R T I C L E I N F O

Article history:

Received 1 August 2016
Received in revised form 3 July 2017
Accepted 4 July 2017
Available online 12 July 2017

MSC:

primary 54 F 15
secondary 54 C 60 , 54D80
Keywords:
Inverse limit
Monotone
Confluent
Weakly confluent
Locally connected

Abstract

We present definitions for monotonicity and weak confluence for upper semicontinuous, set-valued functions that generalize those definitions for continuous, single-valued functions. We demonstrate that if the bonding functions of an inverse sequence are monotone (weakly confluent), then various projection maps from the inverse limit will be monotone (weakly confluent) as well. We use this to show two main results for inverse limits on $[0,1]$. First, if $f_{j}:[0,1] \rightarrow$ $2^{[0,1]}$ is monotone for each $j \in \mathbb{N}$, then $\lim _{\longleftarrow} f_{j}$ is locally connected. Second, if $f_{j}:[0,1] \rightarrow 2^{[0,1]}$ is weakly confluent for each $j \in \mathbb{N}$, we establish a sufficient condition for $\lim f_{j}$ to contain an indecomposable continuum.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Inverse limits have been studied for decades as a mechanism for exploring the properties of continua. In the traditional context, an inverse limit is constructed from a sequence of topological spaces and a sequence of continuous functions between those spaces. In 2004, Mahavier introduced the topic of inverse limits of upper semi-continuous, set-valued functions, and in 2006, this idea was further developed by Ingram and Mahavier [6,9]. Much of the research since then has focused on exploring results from the traditional context of continuous, single-valued functions and determining whether those results can be generalized to the context of upper semi-continuous, set-valued functions.

Capel, [2], presents a number of results concerning inverse limits with monotone bonding functions. He shows that if each bonding function is monotone and either each factor space is an arc or each factor space is a simple closed curve, then the inverse limit is an arc or a simple closed curve respectively. Ingram gives an example, [4, Example 2.4], of a monotone set-valued function on $[0,1]$ whose inverse limit is one-dimensional

[^0]but not an arc. By identifying 0 and 1 to create a circle, this same example illustrates that a monotone set-valued function on a simple closed curve need not have a simple closed curve as its inverse limit either.

Capel also shows that if every factor space is locally connected and every bonding function is monotone, then the inverse limit is locally connected. We present a generalization of this result by showing that if each factor space is an arc and every bonding function is a monotone, set-valued function, then the inverse limit is locally connected.

We also discuss another special class of functions: weakly confluent functions. We give a definition for weakly confluent, set-valued functions and we show that if the bonding functions of an inverse sequence are either all weakly confluent or all monotone, then so are the projection maps defined on the inverse limit and inverse graphs of that sequence.

2. Definitions and notation

A set X is a continuum if it is a non-empty, compact, connected, Hausdorff space. A continuum which is a subset of a space X is called a subcontinuum of X.

Given a topological space X, we define the following hyperspaces of X,

$$
\begin{aligned}
2^{X} & =\{A \subseteq X: A \text { is non-empty and closed in } X\} \\
C(X) & =\left\{A \in 2^{X}: A \text { is connected }\right\} .
\end{aligned}
$$

If X is a metric space with metric d, then we define the Hausdorff metric, \mathcal{H}_{d} on 2^{X} by

$$
\mathcal{H}_{d}(E, F)=\inf \left\{\epsilon>0: E \subseteq \bigcup_{x \in F} B(x, \epsilon) \text { and } F \subseteq \bigcup_{x \in E} B(x, \epsilon)\right\}
$$

where $E, F \in 2^{X}$ and $B(x, \epsilon)$ represents the open ball in X, centered at x, with radius ϵ. If the metric space (X, d) is compact, then the metric spaces $\left(2^{X}, \mathcal{H}_{d}\right)$ and $\left(C(X), \mathcal{H}_{d}\right)$ are compact [10, Theorems 4.13 \& 4.17]. In particular, if X is compact, then every sequence of subcontinua of X has a subsequence which converges to a subcontinuum of X.

If X and Y are topological spaces, a function $f: X \rightarrow 2^{Y}$ is called upper semi-continuous if for every $x_{0} \in X$ and every open set $V \subseteq Y$ with $f\left(x_{0}\right) \subseteq V$, the set $\{x \in X: f(x) \subseteq V\}$ is open in X. The graph of a function $f: X \rightarrow 2^{Y}$ is the set $G(f)=\{(x, y): y \in f(x)\}$. If X and Y are compact Hausdorff spaces, then $f: X \rightarrow 2^{Y}$ is upper semi-continuous if and only if $G(f)$ is closed in $X \times Y$ [6, Theorem 2.1]. If X is a T_{1} space, then every function $f: X \rightarrow Y$ induces a set-valued function $\tilde{f}: X \rightarrow 2^{Y}$ where $\tilde{f}(x)=\{f(x)\}$. In this case, \tilde{f} is upper semi-continuous if and only if f is continuous. In this way, upper semi-continuous, set-valued functions are a generalization of continuous, single-valued functions.

An upper semi-continuous function $f: X \rightarrow 2^{Y}$ is called surjective if for all $y \in Y$, there is an $x \in X$ with $y \in f(x)$. If $f: X \rightarrow 2^{Y}$ and $g: Y \rightarrow 2^{Z}$ are upper semi-continuous functions, we define the composition $g \circ f: X \rightarrow 2^{Z}$ by

$$
g \circ f(x)=\bigcup_{y \in f(x)} g(y)
$$

If X and Y are compact Hausdorff spaces and $f: X \rightarrow 2^{Y}$ is a surjective, upper semi-continuous function, then we define $f^{-1}: Y \rightarrow 2^{X}$ by $f^{-1}(y)=\{x: y \in f(x)\}$. The graph of f is homeomorphic to the graph of f^{-1}, so if f is upper semi-continuous, so is f^{-1}.

For each $j \in \mathbb{N}$, let X_{j} be a topological space, and let $f_{j}: X_{j+1} \rightarrow 2^{X_{j}}$ be upper semi-continuous. Then the sequence of pairs $\left\{X_{j}, f_{j}\right\}_{j=1}^{\infty}$ is called an inverse sequence. The inverse limit of the inverse sequence is the space

Download Persian Version:
https://daneshyari.com/article/5777872

Daneshyari.com

[^0]: E-mail address: james.kelly@cnu.edu.
 http://dx.doi.org/10.1016/j.topol.2017.07.001
 0166-8641/© 2017 Elsevier B.V. All rights reserved.

