ARTICLE IN PRESS

Topology and its Applications $\bullet \bullet \bullet (\bullet \bullet \bullet) \bullet \bullet \bullet - \bullet \bullet \bullet$

ELSEVIER

Contents lists available at ScienceDirect

Topology and its Applications

TOPOL:5996

www.elsevier.com/locate/topol

Weight properties in remainders and classes of spaces

Mitrofan Choban^a, Ekaterina Mihaylova^{b,*}

^a Tiraspol State University, Chişinău, MD 2069, Republic of Moldova
^b University of Architecture, Civil-engineering and Geodesy, Sofia, Bulgaria

ARTICLE INFO

Article history: Received 1 November 2015 Received in revised form 10 February 2016 Accepted 12 February 2016 Available online xxxx

MSC: 54A25 54B05

Keywords: Paracompact p-space p-Space Remainder k-Base

1. Introduction

ABSTRACT

A space X belongs to the class \mathcal{A} if for any closed subspace Y of X the network weight nw(Y) is equal to the weight w(Y) of Y. One of the main results of the present article affirms that $bX \setminus X \in \mathcal{A}$ for any compactification bX of the paracompact *p*-space X. This fact contains a positive answer to one question of A.V. Arhangel'skii and A. Bella. For any Čech-complete space X the above result is not true. Any space with a point-countable k-base is a space from the class \mathcal{A} .

@ 2017 Elsevier B.V. All rights reserved.

By a space we understand a completely regular topological space. We use the terminology from [16]. Denote by w(X) the weight of a space X. A family S of subsets of a space X is a network for X if for any point $x \in X$ and any neighborhood U of the point x there exists an element $P \in S$ such that $x \in P \subseteq U$ (see [1]). The network weight of a space X is the smallest cardinal number of the form |S|, where S is a network for X and is denoted by nw(X).

The space Y is an extension of X if X is a dense subspace of Y. If Y is a compact space, then Y is a compactification of X. A remainder Z of a space X is the subspace $Z = bX \setminus X$ of a Hausdorff compactification bX of X. One of the major tasks in the theory of compactifications is to find out how the properties of a space X are related to the properties of some or of all remainders of X (see [4,5]).

In this article we consider what kind of remainders a metric space and a paracompact *p*-space can have. Distinct properties of remainders were studied in [6,9,10,17]. Interesting properties of remainders of metrizable spaces and paracompact *p*-spaces were described in [4,5,7,8].

* Corresponding author.

http://dx.doi.org/10.1016/j.topol.2017.01.017

Please cite this article in press as: M. Choban, E. Mihaylova, Weight properties in remainders and classes of spaces, Topol. Appl. (2017), http://dx.doi.org/10.1016/j.topol.2017.01.017

E-mail addresses: mmchoban@gmail.com (M. Choban), katiamih@yahoo.com (E. Mihaylova).

^{0166-8641/© 2017} Elsevier B.V. All rights reserved.

$\mathbf{2}$

ARTICLE IN PRESS

M. Choban, E. Mihaylova / Topology and its Applications $\bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet \bullet - \bullet \bullet \bullet$

A.V. Arhangel'skii established that w(X) = nw(X) for compact spaces and for *p*-spaces (see [1,2]). We say that a space X has the Arhangel'skii property (briefly, the Property (α)), if for any closed subspace Y of X we have nw(Y) = w(Y). We denote by \mathcal{A} the class of spaces with the Arhangel'skii property (α).

A family \mathcal{B} of subsets of a space X is called a k-base of X if the sets from \mathcal{B} are open in X and for any point $x \in X$ there exists a compact subset F(x) such that $x \in F(x)$ and for each open subset U which contains F(x) we have $x \in V \subseteq U$ for some $V \in \mathcal{B}$. The k-weight of a space X is the smallest cardinal number of the form $|\mathcal{B}|$, where \mathcal{B} is a k-base for X and is denoted by k - w(X).

The main results of the present paper are the following theorems:

Theorem 1. Let X be a space with a point-countable k-base. Then $X \in A$.

Theorem 2. Let X be a dense paracompact p-subspace of a compact space Y. Then $Y \setminus X \in A$ and, in particular nw(Z) = w(Z) for every closed subspace Z of the remainder $Y \setminus X$.

In ([8], Corollary 3.6) A.V. Arhangel'skii has proved the following curious statement: If a space P with a countable network is a closed subspace of some remainder $Y \setminus X$ of a paracompact *p*-space X, then P has a countable base. This fact follows from Theorem 2.

In particular, we obtain the following assertions which contain a positive answer to the Question 2.15 from [9]:

Corollary 1. Let $X \in A$ and Y be a dense metrizable subspace of the space X. Then $X \setminus Y \in A$ and $nw(X \setminus Y) = w(X \setminus Y)$.

Corollary 2. If Y is a compactification of a metrizable space X, then $Y \setminus X \in \mathcal{A}$ and $nw(Y \setminus X) = w(Y \setminus X)$.

Now we mention the following elementary and useful facts:

Proposition 1. Assume that for each point $x \in X$ there exist an open set U(x) and a subspace Y(x) such that $Y(x) \in A$ and $x \in U(x) \subseteq Y(x)$. Then $X \in A$.

Proof. Let S be a network of the space X. Then there exists a subset $L \subseteq X$ such that $|L| \leq |S|$ and $\cup \{U(x) : x \in L\} = X$. Then $w(Y(x)) = nw(Y(x)) \leq |S|$ and in U(x) there exists an open base $\mathcal{B}(x)$ of cardinality $|\mathcal{B}(x)| \leq |S|$. Then $\mathcal{B} = \cup \{\mathcal{B}(x) : x \in L\}$ is a base for X and $|\mathcal{B}| \leq |S|$. Hence $w(X) \leq nw(X)$. The proof is complete.

Corollary 3. If Y is an open subspace of a space X and $X \in A$, then $Y \in A$.

From the definition it follows:

Corollary 4. If Y is a closed subspace of a space X and $X \in A$, then $Y \in A$.

2. On spaces with point-countable k-bases

Theorem 3. For any space X we have w(X) = k - w(X) + nw(X).

Proof. Obviously, $k - w(X) + nw(X) \le w(X)$.

Let $k - w(X) + nw(X) \leq \tau$. Assume that τ is an infinite cardinal number and S is a network of X of the cardinality $\leq \tau$.

Please cite this article in press as: M. Choban, E. Mihaylova, Weight properties in remainders and classes of spaces, Topol. Appl. (2017), http://dx.doi.org/10.1016/j.topol.2017.01.017

Download English Version:

https://daneshyari.com/en/article/5777883

Download Persian Version:

https://daneshyari.com/article/5777883

Daneshyari.com