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1. Introduction

By a space we understand a completely regular topological space. We use the terminology from [16].
Denote by w(X) the weight of a space X. A family S of subsets of a space X is a network for X if for any
point x € X and any neighborhood U of the point x there exists an element P € S such that x € P C U
(see [1]). The network weight of a space X is the smallest cardinal number of the form |S|, where S is a
network for X and is denoted by nw(X).

The space Y is an extension of X if X is a dense subspace of Y. If Y is a compact space, then Y
is a compactification of X. A remainder Z of a space X is the subspace Z = bX \ X of a Hausdorff
compactification bX of X. One of the major tasks in the theory of compactifications is to find out how the
properties of a space X are related to the properties of some or of all remainders of X (see [4,5]).

In this article we consider what kind of remainders a metric space and a paracompact p-space can
have. Distinct properties of remainders were studied in [6,9,10,17]. Interesting properties of remainders of
metrizable spaces and paracompact p-spaces were described in [4,5,7.8].
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A.V. Arhangel’skii established that w(X) = nw(X) for compact spaces and for p-spaces (see [1,2]). We
say that a space X has the Arhangel’skii property (briefly, the Property («)), if for any closed subspace Y
of X we have nw(Y) = w(Y"). We denote by A the class of spaces with the Arhangel’skii property (o).

A family B of subsets of a space X is called a k-base of X if the sets from B are open in X and for any
point € X there exists a compact subset F(x) such that z € F(z) and for each open subset U which
contains F'(z) we have z € V C U for some V € B. The k-weight of a space X is the smallest cardinal
number of the form |B|, where B is a k-base for X and is denoted by k — w(X).

The main results of the present paper are the following theorems:

Theorem 1. Let X be a space with a point-countable k-base. Then X € A.

Theorem 2. Let X be a dense paracompact p-subspace of a compact space Y. Then Y \ X € A and, in
particular nw(Z) = w(Z) for every closed subspace Z of the remainder Y \ X.

In ([8], Corollary 3.6) A.V. Arhangel’skii has proved the following curious statement: If a space P with a
countable network is a closed subspace of some remainder Y\ X of a paracompact p-space X, then P has
a countable base. This fact follows from Theorem 2.

In particular, we obtain the following assertions which contain a positive answer to the Question 2.15

from [9]:

Corollary 1. Let X € A and Y be a dense metrizable subspace of the space X. Then X \'Y € A and
nw(X\Y)=wX\Y).

Corollary 2. If Y is a compactification of a metrizable space X, then Y\ X € A and nw(Y \ X) = w(Y \ X).
Now we mention the following elementary and useful facts:

Proposition 1. Assume that for each point x € X there exist an open set U(xz) and a subspace Y (x) such
that Y(z) € A and x € U(z) CY(x). Then X € A.

Proof. Let S be a network of the space X. Then there exists a subset L C X such that |L| < |S| and
U{U(z) : « € L} = X. Then w(Y(x)) = nw(Y (x)) < |S| and in U(z) there exists an open base B(z) of
cardinality |B(z)| < |S|. Then B = U{B(z) : € L} is a base for X and |B| < |S|. Hence w(X) < nw(X).
The proof is complete.
Corollary 3. If Y is an open subspace of a space X and X € A, thenY € A.

From the definition it follows:
Corollary 4. If Y is a closed subspace of a space X and X € A, thenY € A.

2. On spaces with point-countable k-bases

Theorem 3. For any space X we have w(X) =k — w(X) + nw(X).

Proof. Obviously, k — w(X) + nw(X) < w(X).
Let £ — w(X) 4+ nw(X) < 7. Assume that 7 is an infinite cardinal number and S is a network of X of
the cardinality < 7.
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