Nested defining sequences and 1 dimensionality of decomposition elements

Robert J. Daverman ${ }^{\text {a,* }}$, Shijie Gu ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, University of Tennessee, Knoxville, TN, 37996, United States
${ }^{\mathrm{b}}$ Department of Mathematical Sciences, University of Wisconsin, Milwaukee, WI, 53211, United States

A R T I C L E I N F O

Article history:

Received 29 July 2015
Received in revised form 4 February 2016
Accepted 4 February 2016
Available online xxxx
In memory of Alexander Chigogidze

MSC:

primary 57N15, 57N12, 57B15
secondary $54 \mathrm{C} 56,57 \mathrm{~N} 25,57 \mathrm{P} 99$
Keywords:
Cell-like decomposition
Defining sequence
Nested defining sequence
Generalized manifold
Singular set
Totally wild flow

Abstract

It is shown that every cell-like, upper semicontinuous decomposition of an n-manifold, $n \neq 4$, that arises from a nested defining sequence can be replaced by a new cell-like decomposition, with the same quotient space and with elements of dimension at most one.

© 2017 Published by Elsevier B.V.

This paper addresses the question of whether a cell-like map from an n-manifold to a finite dimensional space can be approximated by another cell-like map having 1-dimensional point preimages. The normal form for decompositions due to Cannon [2] and Quinn [9] (or see [4, Theorem 40.6]) assures this can be done when $n \geq 5$ and X is an n-manifold except for a singular set $S(X)$ of dimension at most $n-3$. The same conclusion also holds when $S(X)$ is contained in an $(n-1)$-manifold. However, the general case remains unresolved.

Here we settle a prominent case in which the map arises as the decomposition map associated with a nested defining sequence in the domain M. The term is explained in the next section. The following is the central result.

[^0]http://dx.doi.org/10.1016/j.topol.2017.01.018
0166-8641/© 2017 Published by Elsevier B.V.

Main Theorem 0.1. Let M be a compact n-manifold, $n \neq 4$, and G a cell-like upper semicontinuous decomposition of M arising from a nested defining sequence. Then, for each $\epsilon>0$ the decomposition map $\pi: M \rightarrow X=M / G$ can be ϵ-approximated by a cell-like map $F: M \rightarrow X$ such that each point preimage $F^{-1}(x), x \in X$, has dimension at most 1 .

1. Definitions and basic properties

Let M be an n-manifold. A nested defining sequence for M is a sequence $\mathscr{S}=\left\{\mathscr{M}_{1}, \mathscr{M}_{2}, \ldots\right\}$ satisfying the following three conditions:

Disjointness Criterion. For each index i the set \mathscr{M}_{i} is a locally finite collection $\left\{A_{j}\right\}$ of compact n-manifolds with boundary with pairwise disjoint interiors.

Nested Criterion. For each index $i>1$, each $A \in \mathscr{M}_{i}$ has a unique predecessor, Pre A, in \mathscr{M}_{i-1} that properly contains A.

Boundary Size Criterion. For each index i, each $A \in \mathscr{M}_{i}$ and each pair of distinct points $x, y \in \partial A$ there is an integer $s>i$ such that no element of \mathscr{M}_{s} contains both x and y.

These conditions are slightly more general than those of [3] or [4, Section 34], but they are all that are essential.

The decomposition G of M arising from the nested defining sequence $\mathscr{S}=\left\{\mathscr{M}_{1}, \mathscr{M}_{2}, \ldots\right\}$ is the relation given by the rule that $x, y \in M$ belong to the same element of G if there exists a fixed integer k, depending simply on x and y, such that each \mathscr{M}_{i} has a chain of at most k elements connecting x to y; explicitly, there is a chain $A_{1}, A_{2}, \ldots, A_{k}$ of elements from \mathscr{M}_{i} such that $x \in A_{1}, y \in A_{k}$ and $A_{j} \cap A_{j+1} \neq \emptyset$ for $j=1,2, \ldots, k-1$. It should be clear that this is an equivalence relation. It will follow from Lemma 1.1 below that equivalent points x, y are actually connected by a chain of length two, but that is not required by the definition.

Since the focus here is on cell-like decompositions, we insist that the nested defining sequence also satisfies the following, which assures that the decomposition arising from the sequence is cell-like; see [3, Theorem 1] or [4, Prop. 34.4].

Null Homotopy Criterion. For $i>1$ and any $A \in \mathscr{M}_{i}$ the inclusion $A \rightarrow \operatorname{Pre} A$ is homotopic to a constant. Let X be a space and \mathscr{M} a collection of subsets of X. Given $Z \subset X$, define its star with respect to \mathscr{M} as

$$
S t(Z, \mathscr{M})=Z \cup\{M \in \mathscr{M} \mid M \cap Z \neq \emptyset\} .
$$

Set $S t^{1}(Z, \mathscr{M})=S t(Z, \mathscr{M})$ and recursively for each integer $k>1$ set

$$
S t^{k}(Z, \mathscr{M})=S t\left(S t^{k-1}(Z, \mathscr{M}), \mathscr{M}\right)
$$

The following lemma ([3, Addendum to Theorem 1] or [4, Lemma 34.1]) presents important information about the decomposition G.

Lemma 1.1.

(a) For each $x \in X, \pi^{-1} \pi(x)=\cap_{i} S t^{2}\left(x, \mathscr{M}_{i}\right)$.
(b) No element $g \in G$ contains more than one point of the set $\partial \mathscr{S}$ defined as $\cup_{i}\left\{\partial A \mid A \in \mathscr{M}_{i}\right\}$.
(c) If $x \in g \in G$ and if either $x \in \partial \mathscr{S}$ or $g \cap \partial \mathscr{S}=\emptyset$, then $g=\pi^{-1} \pi(x)=\cap_{i} S t\left(x, \mathscr{M}_{i}\right)$.

Decompositions arising from a nested defining sequence can be rather complex. After all, the concept was introduced to define the Totally Wild Flow on $S^{n} \times \mathbb{R}$, which involves a cell-like decomposition of S^{n}, all elements of which are non-cellular, thereby implying that no point of the decomposition space has a manifold

https://daneshyari.com/en/article/5777884

Download Persian Version:
https://daneshyari.com/article/5777884

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: daverman@math.utk.edu (R.J. Daverman), shijiegu@uwm.edu (S. Gu).

