ARTICLE IN PRESS

Topology and its Applications $\bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet \bullet - \bullet \bullet \bullet$

TOPOL:5997

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Nested defining sequences and 1 dimensionality of decomposition elements

Robert J. Daverman^{a,*}, Shijie Gu^b

^a Department of Mathematics, University of Tennessee, Knoxville, TN, 37996, United States
^b Department of Mathematical Sciences, University of Wisconsin, Milwaukee, WI, 53211, United States

ARTICLE INFO

Article history: Received 29 July 2015 Received in revised form 4 February 2016 Accepted 4 February 2016 Available online xxxx

In memory of Alexander Chigogidze

MSC: primary 57N15, 57N12, 57B15 secondary 54C56, 57N25, 57P99

Keywords: Cell-like decomposition Defining sequence Nested defining sequence Generalized manifold Singular set Totally wild flow

ABSTRACT

It is shown that every cell-like, upper semicontinuous decomposition of an n-manifold, $n \neq 4$, that arises from a nested defining sequence can be replaced by a new cell-like decomposition, with the same quotient space and with elements of dimension at most one.

@ 2017 Published by Elsevier B.V.

This paper addresses the question of whether a cell-like map from an *n*-manifold to a finite dimensional space can be approximated by another cell-like map having 1-dimensional point preimages. The normal form for decompositions due to Cannon [2] and Quinn [9] (or see [4, Theorem 40.6]) assures this can be done when $n \ge 5$ and X is an *n*-manifold except for a singular set S(X) of dimension at most n - 3. The same conclusion also holds when S(X) is contained in an (n - 1)-manifold. However, the general case remains unresolved.

Here we settle a prominent case in which the map arises as the decomposition map associated with a nested defining sequence in the domain M. The term is explained in the next section. The following is the central result.

* Corresponding author. E-mail addresses: daverman@math.utk.edu (R.J. Daverman), shijiegu@uwm.edu (S. Gu).

http://dx.doi.org/10.1016/j.topol.2017.01.018 0166-8641/© 2017 Published by Elsevier B.V.

Please cite this article in press as: R.J. Daverman, S. Gu, Nested defining sequences and 1 dimensionality of decomposition elements, Topol. Appl. (2017), http://dx.doi.org/10.1016/j.topol.2017.01.018

ARTICLE IN PRESS

Main Theorem 0.1. Let M be a compact n-manifold, $n \neq 4$, and G a cell-like upper semicontinuous decomposition of M arising from a nested defining sequence. Then, for each $\epsilon > 0$ the decomposition map $\pi : M \to X = M/G$ can be ϵ -approximated by a cell-like map $F : M \to X$ such that each point preimage $F^{-1}(x), x \in X$, has dimension at most 1.

1. Definitions and basic properties

Let M be an n-manifold. A nested defining sequence for M is a sequence $\mathscr{S} = \{\mathscr{M}_1, \mathscr{M}_2, \ldots\}$ satisfying the following three conditions:

Disjointness Criterion. For each index i the set \mathcal{M}_i is a locally finite collection $\{A_j\}$ of compact n-manifolds with boundary with pairwise disjoint interiors.

Nested Criterion. For each index i > 1, each $A \in \mathcal{M}_i$ has a unique predecessor, PreA, in \mathcal{M}_{i-1} that properly contains A.

Boundary Size Criterion. For each index i, each $A \in \mathcal{M}_i$ and each pair of distinct points $x, y \in \partial A$ there is an integer s > i such that no element of \mathcal{M}_s contains both x and y.

These conditions are slightly more general than those of [3] or [4, Section 34], but they are all that are essential.

The decomposition G of M arising from the nested defining sequence $\mathscr{S} = {\mathscr{M}_1, \mathscr{M}_2, \ldots}$ is the relation given by the rule that $x, y \in M$ belong to the same element of G if there exists a fixed integer k, depending simply on x and y, such that each \mathscr{M}_i has a chain of at most k elements connecting x to y; explicitly, there is a chain A_1, A_2, \ldots, A_k of elements from \mathscr{M}_i such that $x \in A_1, y \in A_k$ and $A_j \cap A_{j+1} \neq \emptyset$ for $j = 1, 2, \ldots, k - 1$. It should be clear that this is an equivalence relation. It will follow from Lemma 1.1 below that equivalent points x, y are actually connected by a chain of length two, but that is not required by the definition.

Since the focus here is on cell-like decompositions, we insist that the nested defining sequence also satisfies the following, which assures that the decomposition arising from the sequence is cell-like; see [3, Theorem 1] or [4, Prop. 34.4].

Null Homotopy Criterion. For i > 1 and any $A \in \mathcal{M}_i$ the inclusion $A \to PreA$ is homotopic to a constant. Let X be a space and \mathcal{M} a collection of subsets of X. Given $Z \subset X$, define its star with respect to \mathcal{M} as

$$St(Z,\mathscr{M}) = Z \cup \{ M \in \mathscr{M} | M \cap Z \neq \emptyset \}.$$

Set $St^1(Z, \mathcal{M}) = St(Z, \mathcal{M})$ and recursively for each integer k > 1 set

$$St^k(Z, \mathscr{M}) = St(St^{k-1}(Z, \mathscr{M}), \mathscr{M}).$$

The following lemma ([3, Addendum to Theorem 1] or [4, Lemma 34.1]) presents important information about the decomposition G.

Lemma 1.1.

- (a) For each $x \in X$, $\pi^{-1}\pi(x) = \bigcap_i St^2(x, \mathscr{M}_i)$.
- (b) No element $g \in G$ contains more than one point of the set $\partial \mathscr{S}$ defined as $\cup_i \{\partial A | A \in \mathscr{M}_i\}$.
- (c) If $x \in g \in G$ and if either $x \in \partial \mathscr{S}$ or $g \cap \partial \mathscr{S} = \emptyset$, then $g = \pi^{-1}\pi(x) = \bigcap_i St(x, \mathscr{M}_i)$.

Decompositions arising from a nested defining sequence can be rather complex. After all, the concept was introduced to define the Totally Wild Flow on $S^n \times \mathbb{R}$, which involves a cell-like decomposition of S^n , all elements of which are non-cellular, thereby implying that no point of the decomposition space has a manifold

Download English Version:

https://daneshyari.com/en/article/5777884

Download Persian Version:

https://daneshyari.com/article/5777884

Daneshyari.com