

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Remarks on straight finite decomposition complexity

ar Apolica

Alexander Dranishnikov^{a,*,1}, Michael Zarichnyi^{b,c}

^a Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, FL 32611-8105, USA

^b Department of Mechanics and Mathematics, Lviv University, 1 Universytetska Str., 79000 Lviv, Ukraine

^c Faculty of Mathematics and Natural Sciences, University of Rzeszów, 1 Prof. St. Pigoń Street,

35-310 Rzeszów, Poland

ARTICLE INFO

Article history: Received 15 December 2015 Received in revised form 3 April 2016 Accepted 3 April 2016 Available online 31 January 2017

In memory of Alex Chigogidze

MSC: primary 54F45 secondary 53C23

Keywords: Property A Asymptotic property C Finite decomposition complexity (FDC) Straight FDC

1. Introduction

The notion of decomposition complexity was introduced in [13] using a game theoretical approach. In the paper [7], the authors introduced the notion of straight decomposition complexity. Since then, the class of spaces having straight finite decomposition complexity (sFDC) was considered by different authors; see, e.g., [10,1,16,8,9]. In particular, the spaces with sFDC found applications in the algebraic K-theory [10].

Recently, it turned out that the proof of the implication "sFDC \Rightarrow property A" from [7] contains a gap. In Section 4 we present a corrected proof. Note that J. Dydak [8] found another proof of the above implication.

http://dx.doi.org/10.1016/j.topol.2017.01.020 0166-8641/© 2017 Elsevier B.V. All rights reserved.

ABSTRACT

In their previous paper [7], the authors introduced the straight (non-game-theoretic) counterpart of the finite decomposition complexity defined by E. Guentner, R. Tessera, G. Yu. In the present paper, we correct a proof of a statement from [7] that the straight finite decomposition complexity implies Property A.

We also discuss a dimensional-like ordinal-valued invariant related to the straight finite decomposition complexity.

© 2017 Elsevier B.V. All rights reserved.

^{*} Corresponding author.

E-mail addresses: dranish@math.ufl.edu (A. Dranishnikov), mzar@litech.lviv.ua (M. Zarichnyi).

 $^{^1\,}$ Supported by NSF grant DMS-1304627.

We also apply a stratification procedure to the class of spaces having sFDC in order to obtain a dimensionlike asymptotic invariant (Section 3). Some permanence results (see [12]) for this invariant are discussed.

We are thankful to Takamitsu Yamauchi for spotting a gap in our paper [7].

2. Preliminaries

All spaces under consideration are metrizable. If (X, d) is a metric space and A, B are nonempty subsets of X, we let $d(A, B) = \inf\{d(a, b) \mid a \in A, b \in B\}$. Given R > 0, we say that a family \mathcal{A} of nonempty subsets of X is R-disjoint if d(A, B) > R, for every $A, B \in \mathcal{A}$.

A metric space X is geodesic if for every $x, y \in X$ there exists an isometric embedding $\alpha: [0, d(x, y)] \to X$ such that $\alpha(0) = x$ and $\alpha(d(x, y)) = y$.

Let \mathcal{X}, \mathcal{Y} be families of metric spaces and R > 0. We say that \mathcal{X} is R-decomposable over \mathcal{Y} if, for any $X \in \mathcal{X}, X = \bigcup (\mathcal{V}_1 \cup \mathcal{V}_2)$, where $\mathcal{V}_1, \mathcal{V}_2$ are R-disjoint families and $\mathcal{V}_1 \cup \mathcal{V}_2 \subset \mathcal{Y}$.

A family \mathcal{X} of metric spaces is said to be *bounded* if

 $\operatorname{mesh}(\mathcal{X}) = \sup\{\operatorname{diam} X \mid X \in \mathcal{X}\} < \infty.$

Let \mathfrak{A} be a collection of metric families. A metric family \mathcal{X} is *decomposable over* \mathfrak{A} if, for every r > 0, there exists a metric family $\mathcal{Y} \in \mathfrak{A}$ and an r-decomposition of \mathcal{X} over \mathcal{Y} .

The following notion is introduced in [13].

2.1. Definition. We consider the metric decomposition game of two players, a defender and a challenger. Let $\mathcal{X} = \mathcal{Y}_0$ be the starting family. On the first turn the challenger asserts $R_1 > 0$, the defender responds by exhibiting an R_1 -decomposition of \mathcal{Y}_0 over a new metric family \mathcal{Y}_1 . On the second turn, the challenger asserts an integer R_2 , the defender responds by exhibiting an R_2 -decomposition of \mathcal{Y}_1 over a new metric family \mathcal{Y}_2 . The game continues in this way, turn after turn, and ends if and when the defender produces a bounded family. In this case the defender has won.

A metric family \mathcal{X} has FDC if the defender has always a winning strategy. A metric space X has FDC if the family $\{X\}$ does.

2.2. Definition. We say that a metric space X satisfies the straight Finite Decomposition Property (sFDC) if, for any sequence $R_1 < R_2 < \ldots$ of positive numbers, there exists $n \in \mathbb{N}$ and metric families $\mathcal{V}_1, \mathcal{V}_2, \ldots, \mathcal{V}_n$ such that $\{X\}$ is R_1 -decomposable over $\mathcal{V}_1, \mathcal{V}_i$ is R_i -decomposable over $\mathcal{V}_{i+1}, i = 1, \ldots, n-1$, and the family \mathcal{V}_n is bounded.

From the definition it easily follows that any space that has the FDC also has the straight FDC.

We recall that the asymptotic dimension of a metric space does not exceed n, asdim $X \leq n$ if for every R > 0 there are uniformly bounded R-disjoint families \mathcal{U}_i , $i = 0, \ldots, n$ of sets in X such that the family $\bigcup_{i=1}^{n} \mathcal{U}_i$ is a cover of X [11].

The following notion was introduced in [5].

2.3. Definition. A metric space X is said to have the *asymptotic property* C if for every sequence $R_1 < R_2 < \ldots$ there exists $n \in \mathbb{N}$ and uniformly bounded R_i -disjoint families \mathcal{U}_i , $i = 1, \ldots, n$, such that the family $\bigcup_{i=1}^{n} \mathcal{U}_i$ is a cover of X.

A map $f: X \to Y$ of metric spaces is a coarse embedding if there exist unbounded increasing functions $\varphi, \psi: [0, \infty) \to [0, \infty)$ such that

Download English Version:

https://daneshyari.com/en/article/5777886

Download Persian Version:

https://daneshyari.com/article/5777886

Daneshyari.com