The 6- and 8-palette numbers of links ${ }^{\text {a }}$

Takuji Nakamura ${ }^{\text {a }}$, Yasutaka Nakanishi ${ }^{\text {b }}$, Masahico Saito ${ }^{\text {c }}$, Shin Satoh ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Engineering Science, Osaka Electro-Communication University, Hatsu-cho 18-8, Neyagawa, Osaka 572-8530, Japan
${ }^{\mathrm{b}}$ Department of Mathematics, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan
${ }^{c}$ Department of Mathematics, University of South Florida, Tampa, FL 33620, USA

A R T I C L E I N F O

Article history:

Received 22 December 2015
Received in revised form 20
February 2017
Accepted 27 February 2017
Available online 14 March 2017

```
\(M S C\) :
primary 57 M 25
secondary 57Q45
```


Keywords:

Knot
Diagram
Coloring
Palette number
Virtual knot
Ribbon 2-knot

Abstract

For an effectively n-colorable link $L, \mathrm{C}_{n}^{*}(L)$ stands for the minimum number of distinct colors used over all effective n-colorings of L. It is known that $\mathrm{C}_{n}^{*}(L) \geq$ $1+\log _{2} n$ for any effectively n-colorable link L with non-zero determinant. The aim of this paper is to prove that $\mathrm{C}_{6}^{*}(L)=4$ and $\mathrm{C}_{8}^{*}(L)=5$ for any effectively 6 - and 8 -colorable link L, respectively. For ribbon 2 -links, we prove the same equalities for $n=6$ and 8 , and $\mathrm{C}_{13}^{*}(L)=5$ for $n=13$.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Fox n-colorings [3] are well-known and fundamental knot invariants, and have been extensively studied. For a given positive integer n and a knot K that has a non-trivial n-coloring, the minimum number of colors used among all non-trivially n-colored diagrams of K was originally introduced in [5], and has been studied for small numbers n up to $n=13$, as reviewed below.

Effective n-colorings were defined in [8] to study n-colorings for composite numbers n. An n-coloring is effective if the p-coloring obtained by reduction modulo p is non-trivial for every prime factor p of n. For an integer $n \geq 2$, the n-palette number of an effectively n-colorable link in \mathbb{R}^{3} or a surface-link in \mathbb{R}^{4} is the

[^0]minimum number of distinct colors used over all effectively n-colored diagrams of L. We denote by $\mathrm{C}_{n}^{*}(L)$ the palette number of an effectively n-colorable link L. If n is prime, then an n-coloring is effective if and only if it is non-trivial. In this case, the palette number is coincident with the minimum number of colors introduced in [5].

The palette number has been determined for small n as follows. By definition, we have $\mathrm{C}_{2}^{*}(L)=2$ for any 2-colorable (surface-)link L, and $\mathrm{C}_{n}^{*}(L)=2$ for any splittable (surface-)link L with $n \geq 2$. We also have $\mathrm{C}_{3}^{*}(L)=3$ for any 3 -colorable and non-splittable (surface-)link L. The first non-trivial result was given for $n=5$ [18]. It holds that $\mathrm{C}_{5}^{*}(K)=4$ for any 5 -colorable knot or ribbon 2 -knot K, and there is a non-ribbon 2 -knot K with $\mathrm{C}_{5}^{*}(K)=5$ [18]. Similarly, for $n=7, \mathrm{C}_{7}^{*}(K)=4$ holds for any 7 -colorable knot or ribbon 2 -knot K [14], and there is a non-ribbon 2-knot K with $\mathrm{C}_{7}^{*}(K)=6$ [15].

On the other hand, for any $n \geq 4$, there is an effectively n-colorable and non-splittable link L with $\mathrm{C}_{n}^{*}(L)=4$, although $\operatorname{det}(L)=0[16]$. When we are restricted to an effectively n-colorable link with $\operatorname{det}(L) \neq 0$, the lower bound is given by $\mathrm{C}_{n}^{*}(L) \geq 1+\log _{2} n[6]$, which is a generalization of the inequality in the case of knots and prime numbers n [11]. For $n=9$ and 11, it was shown in [12] and [13], respectively, that the equality $\mathrm{C}_{n}^{*}(L)=5$ holds for any effectively n-colorable link or ribbon 2-link L, and for $n=13$, the same equality holds for any effectively 13 -colorable link in $\mathbb{R}^{3}[1,2]$.

The aim of this paper is to prove that $\mathrm{C}_{6}^{*}(L)=4$ and $\mathrm{C}_{8}^{*}(L)=5$ (Theorems 2.5 and 2.10), thereby completing the list of values of $\mathrm{C}_{n}^{*}(L)$ for $n \leq 9$.

This paper is organized as follows. In Section 2, we present a summary of various results on the n-palette number and properties of effectively n-colored link diagrams. In Section 3, we prove that any effectively 6 -colorable link has a diagram colored by four colors $0,1,2$, and 3 . In Section 4, we prove that any effectively 8 -colorable link has a diagram colored by five colors $0,1,2,3$, and 6 . Section 5 is devoted to studying the case of effectively 6 -, 8 -, or 13 -colorable ribbon 2 -links.

2. Preliminaries

A diagram of a link is regarded as a disjoint union of arcs obtained from its projection image in a plane by cutting it at under-crossings. It may contain embedded circles without under-crossings, and we also regard them as arcs of D for convenience.

For an integer $n \geq 2$ and a diagram D of a link L, a Fox n-coloring [3] (or simply an n-coloring) for D is a map

$$
C:\{\text { the } \operatorname{arcs} \text { of } D\} \rightarrow \mathbb{Z} / n \mathbb{Z}
$$

such that the congruence $a+c \equiv 2 b(\bmod n)$ holds at every crossing of D, where a and c are the elements of $\mathbb{Z} / n \mathbb{Z}$ assigned to the under-arcs by C and b is the element assigned to the over-arc. If an element $a \in \mathbb{Z} / n \mathbb{Z}$ is assigned to an arc of D by C, then a is called the color of the arc, and the arc is called an a-arc. The color of a crossing is $\{a|b| c\}$ if the under-arcs are a - and c-arcs and the over-arc is a b-arc. We say that the color $\{a|b| c\}$ of a crossing is trivial if $a=b=c$, and otherwise non-trivial.

An n-coloring C for D is called trivial if the map C is constant; that is, all the arcs of D receive a single color, and otherwise non-trivial. Furthermore, an n-coloring C is called effective [8] if for any prime factor p of n, the p-coloring $\pi_{p}^{n} \circ C$ is non-trivial, where $\pi_{p}^{n}: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / p \mathbb{Z}$ is the natural projection. It follows by the Chinese remainder theorem that, for a composite n, an n-coloring C is non-trivial if and only if there is a prime factor p of n such that the p-coloring $\pi_{p}^{n} \circ C$ is non-trivial. Therefore, the effective n-colorability is stronger than the non-trivial n-colorability provided that n is a composite number.

We say that a link L is n-colorable if a diagram of L has a non-trivial n-coloring, and effectively n-colorable if a diagram has an effective n-coloring. By using Reidemeister moves, we see that this definition does not

Download Persian Version:
https://daneshyari.com/article/5777907

Daneshyari.com

[^0]: के The third author was partially supported by (USA) NIH R01GM109459. The fourth author was partially supported by JSPS KAKENHI Grant Number 25400090.

 * Corresponding author.

 E-mail addresses: n-takuji@isc.osakac.ac.jp (T. Nakamura), nakanisi@math.kobe-u.ac.jp (Y. Nakanishi), saito@usf.edu (M. Saito), shin@math.kobe-u.ac.jp (S. Satoh).

