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We consider the braid group Bn(X) on a finite simplicial complex X, which is a 
generalization of those on both manifolds and graphs that have been studied already 
by many authors. We figure out the relationships between geometric decompositions 
for X and their effects on the braid groups.
As applications, we give complete criteria for both the surface embeddability and 
planarity for X, which are the torsion-freeness of the braid group Bn(X) and its 
abelianization H1(Bn(X)), respectively.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The braid group Bn(D2) on a 2-disk D2 was firstly introduced by E. Artin in 1920’s, and Fox and 
Neuwirth generalized it to braid group Bn(X) on an arbitrary topological space X via a configuration 
space, which is defined as follows: For a compact, connected topological space X, the ordered configuration 
space Fn(X) is the set of n-tuples of distinct points in X, and the orbit space Bn(X) under the action of 
the symmetric group Sn on Fn(X) permutting coordinates is called the unordered configuration space on X:

Fn(X) = Xn \ Δ, Bn(X) = Fn(X)/Sn,

where
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Δ = {(x1, . . . , xn)|xi = xj for some i �= j} ⊂ Xn.

Let ∗̄n and ∗n be basepoints for Fn(X) and Bn(X), respectively. Then the pure n-braid group Pn(X, ̄∗n)
and (full) n-braid group Bn(X, ∗n) are defined to be the fundamental groups of the configuration spaces 
Fn(X) and Bn(X), respectively. We will suppress basepoints and denote these groups by Pn(X) and Bn(X)
unless any ambiguity occurs.

However, most of research on braid groups has been focused on braid groups on manifolds, more specifi-
cally, on surfaces, until the end of 20th century when Ghrist presented a pioneering paper [1] about braid 
groups on graphs Γ which are finite, 1-dimensional simplicial complexes. In 2000, Abrams defined in his 
Ph.D. thesis [2] a combinatorial version of a configuration space, called a discrete configuration space, con-
sisting of n open cells in Γ having pairwise no common boundaries. A discrete configuration space has 
the benefit that it admits a cubical complex structure making the description of paths of points easier. 
However it depends not only on homeomorphic type but also the cell structure of the underlying graph Γ. 
Abrams overcame this problem by proving stability up to homotopy under the subdivision of edges once Γ
is sufficiently subdivided.

Crisp and Wiest in [3] showed the embeddability of surface groups and graph braid groups into right-
angled Artin groups. Farley and Sabalka in [4] used Forman’s Discrete Morse theory [5] on discrete 
configuration spaces to provide an algorithmic way to compute a presentation of Bn(Γ), and furthermore 
they figured out the relation between braid groups on trees and right-angled Artin groups. On the extension 
of these works, Kim-Ko-Park in [6] and Ko-Park in [7] provided geometric criteria for the braid group on a 
given graph to be a right-angled Artin group, and moreover a new algebraic criterion for the planarity of a 
graph.

On the contrary, for a simplicial complex, not manifold, of dimension 2 or higher, braid theory is still 
unexplored. We will focus on the braid group on a finite, connected simplicial complex X of arbitrary dimen-
sion, which is generalizations of both graphs and surfaces. We consider surgeries—attaching or removing 
higher cells, edge contraction or inverses, and so on—and how these surgeries change the corresponding 
braid groups. Indeed, via suitable surgeries we may obtain a simple complex X ′ of dimension 2 whose 
vertices have very obvious links. Furthermore, this can be done without changing the corresponding braid 
group.

Theorem 1.1. Let X be a complex. Then there is a simple complex X ′ of dimension 2 such that Bn(X) �
Bn(X ′) for all n ≥ 1.

Once we have a simple complex X, then it can be decomposed by cuts into much simpler pieces, and 
eventually into elementary complexes, where an elementary complex plays the role of a building block and 
can be thought as either a star graph or a manifold of dimension at least 2. For the build-up process, we 
provide two types of combination theorems which are generalizations of capping-off and connected sum. 
Furthermore, the combination theorems ensure that the build-up process preserves some geometry of the 
given pieces. In other words, the braid group Bn(X) captures some geometric properties of X as observed 
before.

More precisely, we start with the obvious observations about the various embeddability of X into mani-
folds as follows: For two complexes X and Y , we denote by Y ⊂ X and say that X contains Y if there is an 
simplicial embedding between them after sufficient subdivisions. Then we recall that a complex X embeds 
into (i) a circle iff T3 �⊂ X; (ii) a surface iff S0 �⊂ X; and (iii) a plane iff K5, K3,3, S0 �⊂ X.

The complexes T3 and S0 are the tripod and the cone C(S1 � {∗}) of the union of a circle and a 
point, respectively. See Fig. 1. The graphs Kn and Km,n are complete and complete bipartite graphs, 
respectively.

Then it can be formulated as follows.
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