ELSEVIER

Contents lists available at ScienceDirect

Topology and its Applications

Virtual Special Issue – Proceedings on the International Conference on Set-Theoretic Topology and its Applications, Yokohama 2015

Reversible filters

Alan Dow, Rodrigo Hernández-Gutiérrez*

Department of Mathematics and Statistics, University of North Carolina at Charlotte, Charlotte NC 28223, United States

ABSTRACT

ARTICLE INFO

Article history: Received 19 January 2016 Received in revised form 13 October 2016 Accepted 14 October 2016 Available online 21 April 2017

MSC: 54A10 54D35 54G05

Keywords: Reversible space Čech–Stone compactification Filter

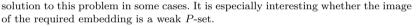
1. Introduction

A topological space X is reversible if every time that $f: X \to X$ is a continuous bijection, then f is a homeomorphism. This class of spaces was defined in [10], where some examples of reversible spaces were given. These include compact spaces, Euclidean spaces \mathbb{R}^n (by the Brouwer invariance of domain theorem) and the space $\omega \cup \{p\}$, where p is an ultrafilter, as a subset of $\beta\omega$. This last example is of interest to us.

Given a filter $\mathcal{F} \subset \mathcal{P}(\omega)$, consider the space $\xi(\mathcal{F}) = \omega \cup \{\mathcal{F}\}$, where every point of ω is isolated and every neighborhood of \mathcal{F} is of the form $\{\mathcal{F}\} \cup A$ with $A \in \mathcal{F}$. Spaces of the form $\xi(\mathcal{F})$ have been studied before, for example by García-Ferreira and Uzcátegi ([6] and [7]). When \mathcal{F} is the Fréchet filter, $\xi(\mathcal{F})$ is homeomorphic to a convergent sequence, which is reversible; when \mathcal{F} is an ultrafilter it is easy to prove that $\xi(\mathcal{F})$ is also reversible, as mentioned above. Also, in [2, section 3], the authors of that paper study when $\xi(\mathcal{F})$ is reversible for filters \mathcal{F} that extend to precisely a finite family of ultrafilters (although these results are expressed in a different language).

* Corresponding author.

an Applicat



A space is reversible if every continuous bijection of the space onto itself is a

homeomorphism. In this paper we study the question of which countable spaces

with a unique non-isolated point are reversible. By Stone duality, these spaces

correspond to closed subsets in the Čech-Stone compactification of the natural

numbers $\beta\omega$. From this, the following natural problem arises: given a space X that

is embeddable in $\beta \omega$, is it possible to embed X in such a way that the associated filter of neighborhoods defines a reversible (or non-reversible) space? We give the

© 2017 Elsevier B.V. All rights reserved.

E-mail addresses: adow@uncc.edu (A. Dow), rodrigo.hdz@gmail.com (R. Hernández-Gutiérrez).

Let us say that a filter $\mathcal{F} \subset \mathcal{P}(\omega)$ is reversible if the topological space $\xi(\mathcal{F})$ is reversible. It is the objective of this paper to study reversible filters. First, we give some examples of filters that are reversible and others that are non-reversible, besides the trivial ones considered above. Due to Stone duality, every filter \mathcal{F} on ω gives rise to a closed subset $K_{\mathcal{F}} \subset \omega^* = \beta \omega \setminus \omega$ (defined below). Then our main concern is to try to find all possible topological types of $K_{\mathcal{F}}$ when \mathcal{F} is either reversible or non-reversible. Our results are as follows.

- Given any compact space X embeddable in $\beta\omega$, there is a reversible filter \mathcal{F} such that X is homeomorphic to $K_{\mathcal{F}}$. (Theorem 3.2)
- Given any compact, extremally disconnected space X embeddable in $\beta\omega$, there is a non-reversible filter \mathcal{F} such that X is homeomorphic to $K_{\mathcal{F}}$. (Theorem 3.5)
- If X is a compact, extremally disconnected space that can be embedded in ω^* as a weak P-set and X has a proper clopen subspace homeomorphic to itself, then there is a non-reversible filter \mathcal{F} such that X is homeomorphic to $K_{\mathcal{F}}$ and $K_{\mathcal{F}}$ is a weak P-set of ω^* . (Theorem 4.1)
- There is a compact, extremally disconnected space X that can be embedded in ω^* as a weak P-set and every time \mathcal{F} is a filter with X homeomorphic to $K_{\mathcal{F}}$ and $K_{\mathcal{F}}$ is a weak P-set, then \mathcal{F} is reversible. (Theorem 4.2)
- Given any compact, extremally disconnected space X that is a continuous image of ω^* , there is a reversible filter \mathcal{F} such that X is homeomorphic to $K_{\mathcal{F}}$ and $K_{\mathcal{F}}$ is a weak P-set of ω^* . (Theorem 4.4)

Also, in section 5, using Martin's axiom, we improve some of the results above by constructing filters \mathcal{F} such that $K_{\mathcal{F}}$ is a *P*-set.

2. Preliminaries and a characterization

Recall that $\beta\omega$ is the Stone space of all ultrafilters on ω and $\omega^* = \beta\omega \setminus \omega$ is the space of free ultrafilters. We will assume the reader's familiarity with most of the facts about $\beta\omega$ from [9]. Recall that a space is an *F*-space if every cozero set is C^* -embedded. Since ω^* is an *F*-space we obtain some interesting properties. For example, every closed subset of ω^* of type G_{δ} is regular closed and every countable subset of ω^* is C^* -embedded. We will also need the more general separation property.

2.1. Theorem. ([3, 3.3]) Let \mathcal{B} and \mathcal{C} be collections of clopen sets of ω^* such that $\mathcal{B} \cup \mathcal{C}$ is pairwise disjoint, $|\mathcal{B}| < \mathfrak{b}$ and \mathcal{C} is countable. Then there exists a non-empty clopen set C such that $\bigcup \mathcal{B} \subset C$ and $(\bigcup \mathcal{C}) \cap C = \emptyset$.

We will be considering spaces embeddable in $\beta\omega$. There is no ZFC characterization of spaces embeddable in $\beta\omega$ but we have the following embedding results. A space is extremally disconnected (ED, for short) if the closure of every open subset is open.

2.2. Theorem.

- [9, 1.4.4] Under CH, any closed subspace of ω^* can be embedded as a nowhere dense P-set.
- [9, 1.4.7] Every compact ED space of weight $\leq \mathfrak{c}$ embeds in ω^* .
- [9, 3.5], [4] If X is an ED space and a continuous image of ω*, then X can be embedded in ω* as a weak P-set.

Given $A \subset \omega$, we denote $cl_{\beta\omega}(A) \cap \omega^* = A^*$. Also, if $f : \omega \to \omega$ is any bijection, there is a continuous extension $\beta f : \beta \omega \to \beta \omega$ which is a homeomorphism; denote $f^* = \beta f \mid_{\omega^*}$.

The Fréchet filter is the filter $\mathcal{F}_r = \{A : \omega \setminus A \in [\omega]^{<\omega}\}$ of all cofinite subsets of ω and we will always assume that our filters extend the Fréchet filter. Each filter $\mathcal{F} \subset \mathcal{P}(\omega)$ defines a closed set $K_{\mathcal{F}} = \{p \in \beta\omega : \mathcal{F} \subset p\}$ that has the property that $A \in \mathcal{F}$ iff $K_{\mathcal{F}} \subset A^*$ and moreover, $K_{\mathcal{F}} = \bigcap \{A^* : A \in \mathcal{F}\}$. Notice that Download English Version:

https://daneshyari.com/en/article/5777939

Download Persian Version:

https://daneshyari.com/article/5777939

Daneshyari.com