

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Virtual Special Issue – Proceedings on the International Conference on Set-Theoretic Topology and its Applications, Yokohama 2015

Remarks on monotone (weak) Lindelöfness

Maddalena Bonanzinga^a, Filippo Cammaroto^a, Masami Sakai^{b,*}

^a Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Messina, Italy
^b Department of Mathematics, Kanagawa University, Hiratsuka 259-1293, Japan

A R T I C L E I N F O

Article history: Received 24 March 2016 Received in revised form 1 April 2016 Accepted 4 April 2016 Available online 22 April 2017

MSC: 54D20

Keywords: Erdös–Rado Monotonically Lindelöf Monotonically weakly Lindelöf Pixley–Roy

ABSTRACT

Using Erdös–Rado's theorem, we show that (1) every monotonically weakly Lindelöf space satisfies the property that every family of cardinality c^+ consisting of nonempty open subsets has an uncountable linked subfamily; (2) every monotonically Lindelöf space has strong caliber (c^+, ω_1) , in particular a monotonically Lindelöf space is hereditarily c-Lindelöf and hereditarily c-separable. (1) gives an answer of a question posed in Bonanzinga, Cammaroto and Pansera [3], and (2) gives partial answers of questions posed in Levy and Matveev [15]. Some other properties on monotonically (weakly) Lindelöf spaces are also discussed. For example, we show that the Pixley–Roy space PR(X) of a space X is monotonically Lindelöf if and only if X is countable and every finite power of X is monotonically Lindelöf.

@ 2017 Elsevier B.V. All rights reserved.

1. Introduction

Throughout this paper, all spaces are assumed to be regular T_1 . The symbol \mathbb{D} is the space consisting of the two points 0 and 1. For an infinite cardinal κ , κ^+ is the successor cardinal of κ . The continuum hypothesis is denoted by CH, and \mathfrak{c} is the continuum. For a space X, we denote by w(X) (resp., nw(X), d(X), $\chi(X)$, $\psi(X)$, s(X), c(X)) the weight (resp., net-weight, density, character, pseudocharacter, spread, cellularity) of X [7]. For families \mathcal{A} and \mathcal{B} of subsets of a set X, we say that \mathcal{A} refines \mathcal{B} if every member of \mathcal{A} is contained in some member of \mathcal{B} . In this paper, \mathcal{A} and \mathcal{B} are not assumed to be a cover of X. If \mathcal{A} refines \mathcal{B} , we write $\mathcal{A} \prec \mathcal{B}$.

Definition 1.1. A space X is monotonically Lindelöf (abbr., mL) if there is a function r (called a mL-operator) that assigns to each open cover \mathcal{U} of X a countable open cover $r(\mathcal{U})$ of X such that (a) $r(\mathcal{U}) \prec \mathcal{U}$ and (b) $r(\mathcal{V}) \prec r(\mathcal{U})$ for any open covers \mathcal{V} and \mathcal{U} of X with $\mathcal{V} \prec \mathcal{U}$.

^{*} Corresponding author.

E-mail addresses: mbonanzinga@unime.it (M. Bonanzinga), camfil@unime.it (F. Cammaroto), sakaim01@kanagawa-u.ac.jp (M. Sakai).

Every mL-space is obviously Lindelöf. This notion was first introduced by Matveev in [16], and recently studied in [2,8,13,14] and [15]. Every second countable space is mL, but neither a compact space nor a countable space is always mL. Every closed subspace of a mL-space is mL.

A space X is said to be *weakly Lindelöf* if every open cover \mathcal{U} of X contains a countable subfamily $\mathcal{V} \subset \mathcal{U}$ such that $\bigcup \mathcal{V}$ is dense in X. A monotone version of weak Lindelöfness was introduced and studied in Bonanzinga, Cammaroto and Pansera [3].

Definition 1.2 ([3, Definition 2.1]). A space X is monotonically weakly Lindelöf (abbr., mwL) if there is a function r (called a mwL-operator) that assigns to each open cover \mathcal{U} of X a countable open family $r(\mathcal{U})$ in X such that (a) $r(\mathcal{U}) \prec \mathcal{U}$, (b) $\bigcup r(\mathcal{U})$ is dense in X and (c) $r(\mathcal{V}) \prec r(\mathcal{U})$ for any open covers \mathcal{V} and \mathcal{U} of X with $\mathcal{V} \prec \mathcal{U}$.

Every mwL-space is obviously weakly Lindelöf. It is easy to see that a space with a countable π -base is mwL. Not every closed subspace of a mwL-space is mwL [3, Theorem 3.1].

In this paper, we further study monotonically (weakly) Lindelöf spaces, and give some (partial) answers of questions posed in [3] and [15].

2. Monotonically (weakly) Lindelöf spaces

For a cardinal $\kappa \geq \omega$, let $A(\kappa) = \{p\} \cup D(\kappa)$ be the one-point compactification of the discrete space $D(\kappa)$ of cardinality κ . It is shown in [13, Corollary 30] that $A(\kappa)$ is mL if and only if $\kappa = \omega$ holds. In contrast with this fact, if $\kappa \leq \mathfrak{c}$ holds, then $A(\kappa)$ is mwL [3, Theorem 2.7]. Thus, $A(\omega_1)$ is a mwL-space which is not mL. First we answer the following question.

Question 2.1 ([3, Problem 2.8]). For what cardinals $\kappa > \mathfrak{c}$ is $A(\kappa)$ mwL?

Lemma 2.2 (Erdös–Rado's theorem, [12, p. 290]). Let I be a set with $|I| = \mathfrak{c}^+$, and let $[I]^2 = \{s \subset I : |s| = 2\}$. Then, for any function $f : [I]^2 \to \omega$, there are a subset $H \subset I$ and a $k \in \omega$ such that $|H| = \omega_1$ and f(s) = k for any $s \in [H]^2$.

A family \mathcal{L} of sets is said to be *linked* if $L \cap L' \neq \emptyset$ for any $L, L' \in \mathcal{L}$. A space X is said to have property $K(\mathfrak{c}^+, \omega_1)$ if every family of cardinality \mathfrak{c}^+ consisting of nonempty open subsets in X has an uncountable linked subfamily.

Theorem 2.3. Every mwL-space has property $K(\mathfrak{c}^+, \omega_1)$.

Proof. Let X be a mwL-space, and let r be a mwL-operator for X. Assume that there is a family $\{D_{\alpha} : \alpha < \mathfrak{c}^+\}$ consisting of nonempty open subsets in X such that any uncountable subfamily is not linked. For each $\alpha < \mathfrak{c}^+$, we take a nonempty open set E_{α} in X with $\overline{E}_{\alpha} \subset D_{\alpha}$. For each $\alpha < \mathfrak{c}^+$, consider the open cover $\mathcal{U}_{\alpha} = \{D_{\alpha}, X \setminus \overline{E}_{\alpha}\}$ of X, and let $r(\mathcal{U}_{\alpha}) = \{V_{\alpha,n} : n \in \omega\}$. We put $[\mathfrak{c}^+]^2 = \{(\alpha, \beta) : \alpha < \beta < \mathfrak{c}^+\}$. For each $(\alpha, \beta) \in [\mathfrak{c}^+]^2$, since E_{α} is open in X and $\bigcup r(\mathcal{U}_{\beta})$ is dense in X, there is some $k(\alpha, \beta) \in \omega$ such that $E_{\alpha} \cap V_{\beta,k(\alpha,\beta)} \neq \emptyset$. Applying Erdös–Rado's theorem to the function $f : [\mathfrak{c}^+]^2 \to \omega$ defined by $f((\alpha, \beta)) = k(\alpha, \beta)$, we can take a subset $H \subset \mathfrak{c}^+$ and a $k \in \omega$ such that $|H| = \omega_1$ and $\alpha, \beta \in H$, $\alpha < \beta$ imply $k(\alpha, \beta) = k$ (hence, $E_{\alpha} \cap V_{\beta,k} \neq \emptyset$). Taking a suitable subset of the well-ordered set H, we may assume that H is order isomorphic to ω_1 . Since $\{D_{\alpha} : \alpha \in H\}$ is not linked and \overline{E}_{α} is contained in D_{α} , the family $\mathcal{U} = \{X \setminus \overline{E}_{\alpha} : \alpha \in H\}$ is an open cover of X. Let $r(\mathcal{U}) = \{W_n : n \in \omega\}$. For each $n \in \omega$, using $r(\mathcal{U}) \prec \mathcal{U}$, we can assign $\alpha_n \in H$ with $W_n \subset X \setminus \overline{E}_{\alpha_n}$ (so, $E_{\alpha_n} \cap W_n = \emptyset$). Let $H' = \{\alpha \in H : \text{ for all } n \in \omega, \alpha_n < \alpha\}$. Since $\{D_{\alpha} : \alpha \in H'\}$ is not linked, there are $\gamma, \delta \in H'$ with $D_{\gamma} \cap D_{\delta} = \emptyset$. Fix this $\gamma \in H' \subset H$. Then, $\alpha_n, \gamma \in H$ and $\alpha_n < \gamma$ imply $E_{\alpha_n} \cap V_{\gamma,k} \neq \emptyset$ for all $n \in \omega$. On the other hand, since $\mathcal{U}_{\gamma} \prec \mathcal{U}$ (because of

Download English Version:

https://daneshyari.com/en/article/5777947

Download Persian Version:

https://daneshyari.com/article/5777947

Daneshyari.com