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This is a short survey about the three well-known theories of characteristic classes 
of singular varieties and the so-called motivic Hirzebruch class, which in a sense 
“unifies” these three theories as an affirmative answer to a problem posed by Robert 
MacPherson in the early 1970s.
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1. Introduction

This article is an extended version of the author’s talk (with the same title) at “International Conference 
on Set-Theoretic Topology and Its Application 2015” held at Kanagawa University, August 24–26, 2015. 
First we start with the basic properties (which even elementary school children know) of counting a finite 
set, which gives an explanation of why the Euler(–Poincaré) characteristic takes the alternating sum of 
vertices, edges, faces, and so on. Then we give a survey on the well-known characteristic classes of singular 
varieties, which “count” spaces in the sense of the above basic properties with a very slight modification. 
We also give some remarks on motivic Hirzebruch classes [9,6] (for further recent works, see [13,16,37–44], 
etc.) and related stuff.

2. Euler characteristic revisited

The Euler characteristic of a polyhedra X is defined to be the alternating sum of the numbers of vertices 
(V ), edges (E), faces (F ), and so on: χ(X) := V − E + F − · · · . The following would be a reasonable 
explanation for why we take such an alternating sum.
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First we recall the basic and fundamental properties of the counting of a finite set X, i.e., the cardinality

c(X) := |X| = the number of the elements in the set X.

Certainly the counting c for finite sets satisfies the following basic properties:

(1) A ∼= A′ (bijection or equipotent) =⇒ c(A) = c(A′),
(2) c(A) = c(A \B) + c(B) for B ⊂ A, (this is called “scissor formula” or “motivic”)
(3) c(A ×B) = c(A) · c(B),
(4) c(pt) = 1. (Here pt denotes one point.)

Remark 2.1. Using (1) and (3), one can see that c(pt) = 0 or c(pt) = 1. If c(pt) = 0, c(A) = c(A × pt) =
c(A) · c(pt) = c(A) · 0 = 0 for any finite set A. Thus the counting c is a trivial one. Therefore the property 
(4) c(pt) = 1 means that c is non-trivial. Hence the daily-life usual counting c can be said to be a non-trivial
(4), multiplicative (3), additive (2) and set-theoretic invariant (1), emphasizing the above four properties.

If we consider the following “topological counting” c on the category of certain “nice” topological spaces 
such that c(X) ∈ Z and it satisfies the following four properties:

• X ∼= X ′ (homeomorphism = T OP − isomorphism) =⇒ c(X) = c(X ′),
• c(X) = c(X \ Y ) + c(Y ) for Y ⊂ X,
• c(X × Y ) = c(X) · c(Y ),
• c(pt) = 1,

then one can show that if such a c exists, then we must have that c(R) = −1. Indeed, this can be seen as 
follows:

R = (−∞,∞) = (−∞, 0) ∪ {0} ∪ (0,∞) =⇒ c(R) = c ((−∞, 0)) + c({0}) + c ((0,∞)) .

Since we (−∞, 0) ∼= R ∼= (0, ∞), we obtain

c(R) = c(R) + c({0}) + c(R) =⇒ c(R) = −c({0}) = −1.

Hence we have c(Rn) = c(R)n = (−1)n.

Theorem 2.2 (Existence theorem of such a c). The Euler–Poincaré characteristic of the Borel–Moore ho-
mology theory H∗(X) or the cohomology with compact support H∗

c (X) gives rise to such a count c, i.e.,

χc(X) :=
∑
n

(−1)n dimHn(X) =
∑
n

(−1)n dimHn
c (X)

satisfies the above 4 properties (1), (2), (3) and (4).

Hence, if X is a finite CW -complex with σn(X) denoting the number of open n-cells, then

c(X) =
∑
n

(−1)nσn(X) = χ(X)

is the Euler–Poincaré characteristic of X. Namely, the topological counting c is uniquely determined and it 
is the compactly supported Euler–Poincaré characteristic.
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