Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Representation space with confluent mappings

José G. Anaya^a, Félix Capulín^a, Enrique Castañeda-Alvarado^a, Włodzimierz J. Charatonik^{b,*}, Fernando Orozco-Zitli^a

 ^a Universidad Autónoma del Estado de México, Facultad de Ciencias, Instituto Literario No. 100, Col. Centro, C. P. 50000, Toluca, Estado de México, Mexico
^b Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO 65409-0020, USA

A R T I C L E I N F O

Article history: Received 25 August 2016 Received in revised form 19 January 2017 Accepted 21 January 2017 Available online 20 February 2017

MSC: primary 54B80, 54C10 secondary 54A10, 54D10, 54F15

Keywords: Confluent mapping Continuum ε -Map Fan Inverse limit Representation space

1. Introduction

Given two topological spaces X and Y and a cover \mathcal{U} of X, we say that a mapping $f : X \to Y$ is a \mathcal{U} -mapping if there is an open cover \mathcal{V} of Y such that $\{f^{-1}(V) : V \in \mathcal{V}\}$ refines \mathcal{U} .

Let \mathcal{C} be a class of topological spaces and let α be a class of mappings between elements of \mathcal{C} . We say that α has the composition property if

- (1) for every $X \in \mathcal{C}$ the identity map $id_X : X \to X$ is in α ,
- (2) if $f: X \to Y$ and $g: Y \to Z$ are in α , then $g \circ f$ is in α .

* Corresponding author.

E-mail addresses: jgao@uamex.mx (J.G. Anaya), fcapulin@gmail.com (F. Capulín), eca@uaemex.mx

(E. Castañeda-Alvarado), wjcharat@mst.edu (W.J. Charatonik), forozcozitli@gmail.com (F. Orozco-Zitli).

 $\label{eq:http://dx.doi.org/10.1016/j.topol.2017.01.030} 0166-8641/ © 2017$ Elsevier B.V. All rights reserved.

ELSEVIER

Topology and its Applications

ABSTRACT

Given a subclass \mathcal{P} of the set \mathcal{N} of all non-degenerate continua we say $X \in \operatorname{Cl}_{\mathcal{F}}(\mathcal{P})$ if for every $\varepsilon > 0$ there are a continuum $Y \in \mathcal{P}$ and a confluent ε -map $f: X \to Y$. This closure operator $\operatorname{Cl}_{\mathcal{F}}$ gives a topology $\tau_{\mathcal{F}}$ on the space \mathcal{N} , see [1]. In this article we continue investigation of the topological space $(\mathcal{N}, \tau_{\mathcal{F}})$, we establish interiors and closures of some natural classes of continua, we recall related results and pose several open problems. This gives us a new point of view on topological properties of some classes of continua and on confluent mappings.

© 2017 Elsevier B.V. All rights reserved.

Let \mathcal{C} be a class of topological spaces, let \mathcal{P} be a subset of \mathcal{C} , and let α be a class of mappings having the composition property. Given $X \in \mathcal{C}$, we write $X \in \operatorname{Cl}_{\alpha}(\mathcal{P})$ if for every open cover \mathcal{U} of X there is a space $Y \in \mathcal{P}$ and a \mathcal{U} -mapping $f: X \to Y$ that belongs to α . The closure operator $\operatorname{Cl}_{\alpha}$ defines a topology τ_{α} in \mathcal{C} .

In [1] are proved general properties of the operator $\operatorname{Cl}_{\alpha}$ and many properties of the topological space $(\mathbb{N}, \tau_{\alpha})$, where \mathbb{N} is the space of all non-degenerate metric continua and α is one of the following classes: all mappings, confluent and monotone mappings. Readers specially interested in this topic are referred to [1,5,12]. If X is a metric continuum, d denote a metric in X, d(a, b) denote the distance between the points a and b and if $A, B \subset X$, dist(A, B) denote the distance between the sets A and B, defined as the infimum of all distances d(p, q), where $p \in A$ and $q \in B$.

Now in this paper we will give examples of interiors and closures of some classes of continua when α is the family of confluent mappings.

2. Definitions, notation and basic results

Let us adopt the following symbols for classes of continua:

$\mathbb{A}\mathbb{K}$	 arc Kelley continua,
$\mathbb{D}\mathrm{im}1$	 continua of dimension 1,
\mathbb{CF}	 cones over 0-dimensional sets,
\mathbb{D}	 dendroids,
\mathbb{D}_0	 dendrites,
\mathbb{F}	 fans (excluding the arc),
\mathbb{G}	 graphs,
$\mathbb{H}\mathbb{U}$	 hereditarily unicoherent continua,
\mathbb{K}	 Kelley continua,
\mathbb{KT}	 Knaster type continua, including the arc,
\mathbb{LC}	 locally connected continua,
$\lambda \mathbb{D}$	 λ -dendroids,
\mathbb{NO}	 n -ods, for $n \ge 3$,
\mathbb{SD}	 smooth dendroids,
\mathbb{SF}	 smooth fans,
S	 solenoids,
\mathbb{TR}	 trees,
\mathbb{TL}	 tree-like continua.

3. Graphs

Let us start with recalling results shown in [1].

Theorem 3.1.

- 1. $\operatorname{Int}_{\mathcal{F}}(\{arc\}) = \{arc\},\$
- 2. $\operatorname{Cl}_{\mathcal{F}}(\{arc\}) = \mathbb{KT},$
- 3. $\operatorname{Int}_{\mathcal{F}}(\{simple \ closed \ curve\}) = \{simple \ closed \ curve\},\$
- 4. $\operatorname{Cl}_{\mathcal{F}}(\{\text{simple closed curve}\}) = \mathbb{S}.$

The following theorem has been shown in [19, Corollary 3.15, p. 126].

Download English Version:

https://daneshyari.com/en/article/5777982

Download Persian Version:

https://daneshyari.com/article/5777982

Daneshyari.com