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This closure operator Clx gives a topology 77 on the space N, see [1]. In this article
we continue investigation of the topological space (N, 7), we establish interiors and
closures of some natural classes of continua, we recall related results and pose several
open problems. This gives us a new point of view on topological properties of some
MSC: classes of continua and on confluent mappings.
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1. Introduction

Given two topological spaces X and Y and a cover U of X, we say that a mapping f : X — Y is a
U-mapping if there is an open cover V of Y such that {f~*(V): V € V} refines U.

Let C be a class of topological spaces and let a be a class of mappings between elements of C. We say
that « has the composition property if

(1) for every X € C the identity map idx : X — X is in «,
(2)if f: X—>Yandg:Y — Z are in , then go f is in a.
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Let C be a class of topological spaces, let P be a subset of C, and let a be a class of mappings having the
composition property. Given X € C, we write X € Cl,(P) if for every open cover U of X there is a space
Y € P and a U-mapping f : X — Y that belongs to a. The closure operator Cl, defines a topology 7, in C.

In [1] are proved general properties of the operator Cl, and many properties of the topological space
(N, 7,), where N is the space of all non-degenerate metric continua and « is one of the following classes:
all mappings, confluent and monotone mappings. Readers specially interested in this topic are referred to
[1,5,12]. If X is a metric continuum, d denote a metric in X, d(a, b) denote the distance between the points
a and b and if A, B C X, dist(A, B) denote the distance between the sets A and B, defined as the infimum
of all distances d(p, q), where p € A and ¢ € B.

Now in this paper we will give examples of interiors and closures of some classes of continua when « is
the family of confluent mappings.

2. Definitions, notation and basic results

Let us adopt the following symbols for classes of continua:

AK — arc Kelley continua,

Diml — continua of dimension 1,

CF — cones over O-dimensional sets,

D — dendroids,

Dy — dendrites,

F — fans (excluding the arc),

G — graphs,

HU — hereditarily unicoherent continua,
K — Kelley continua,

KT — Khnaster type continua, including the arc,
LC — locally connected continua,

AD —  A-dendroids,

NO — mn-ods, for n > 3,

SD — smooth dendroids,

SF — smooth fans,

S — solenoids,

TR —  trees,

TL — tree-like continua.

3. Graphs

Let us start with recalling results shown in [1].

Theorem 3.1.

1. Intr({arc}) = {arc},

2. Clg({arc}) = KT,

3. Intx({simple closed curve}) = {simple closed curve},
4. Clg({simple closed curve}) =S.

The following theorem has been shown in [19, Corollary 3.15, p. 126].
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