Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Chinese remainder approximation theorem

Matan Komisarchik

Department of Mathematics, Bar-Ilan University, 52900 Ramat-Gan, Israel

ARTICLE INFO

Article history: Received 8 July 2016 Accepted 16 February 2017

MSC: 54H13 54E15 13A18 13J10 30E05

Keywords: Chinese remainder theorem Hyperspace uniformity Interpolation Supercomplete spaces Topological ring

1. Introduction

This paper studies topological versions of the *Chinese remainder theorem – CRT* using two main concepts: topological co-maximality and the hyperspace uniformity. After establishing both of these notions, we proceed by proving the *Chinese remainder approximation theorem – CRAT* (Theorem 5.2). Our final results will be derived from it.

We begin by introducing the notion of *topological ideal co-maximality* – TCM, explaining what motivates our definition and presenting several examples. Then we show how some properties of co-maximality remain valid in the topological case. We also obtain a result resembling the second isomorphism theorem for co-maximal ideals in topological rings (Theorem 3.7). Finally, we prove a direct extension of the CRT for finite families of ideals (Theorem 3.8).

The hyperspace uniformity [5, p. 28] is used to study the case of infinite families of ideals. After a brief reminder of the basic definitions, we continue by studying topological co-maximality from the perspective

ABSTRACT

We study a topological generalization of ideal co-maximality in topological rings and present some of its properties, including a generalization of the Chinese remainder theorem. Using the hyperspace uniformity, we prove a stronger version of this theorem concerning infinitely many ideals in supercomplete, pseudo-valuated rings. Finally we prove two interpolation theorems.

© 2017 Elsevier B.V. All rights reserved.

E-mail address: komisan@macs.biu.ac.il.

of the hyperspace. From here on, our discussion is restricted to the class of pseudo-valuated rings. We show some approximation properties of those rings which will be used later to prove a strengthened version of the CRAT. Our main example is the ring of analytic functions over a domain in \mathbb{C} . This example will be used later to prove a statement about interpolation in infinite amount of points.

We then prove the CRAT for compact families of pairwise TCM ideals in general topological rings. Shortly afterwards, we present a stronger version for supercomplete, pseudo-valuated rings and provide some applications. In particular, we will prove two known interpolation theorems: [3, Corollary 9 on p. 366] and [8, Theorem 15.13].

Acknowledgments: I would like to thank Michael Megrelishvili, Menachem Shlossberg, Luie Polev, Tahl Nowik and Shahar Nevo for their valuable suggestions.

2. Preliminaries

All topological spaces mentioned below are Hausdorff. For every topological space X, we define Conn(X) to be the set of all connected components of X. Also, if A is a subset of X, then its closure is denoted by \overline{A} . The filter of neighborhoods at a given point $x \in X$ will be denoted by $\mathcal{N}_X(x)$ or simply $\mathcal{N}(x)$ when no confusion can arise. Any uniform space (X, μ) will be denoted by μX . If Y is a uniform space, then C(X, Y) is the space of all continuous functions from X to Y with the uniformity of compact convergence.

If (G, +) is an (abelian) topological group and ε is a neighborhood of the zero element, then $\frac{1}{n}\varepsilon$ is any neighborhood of zero such that

$$\underbrace{\frac{1}{n}\varepsilon + \dots + \frac{1}{n}\varepsilon}_{n \text{ times}} \subseteq \varepsilon.$$

All the rings contain an identity.

Let $\hat{\mathbb{C}}$ be the Riemann sphere $\mathbb{C} \cup \{\infty\}$. Given a nonempty open set $\Omega \subset \hat{\mathbb{C}}$, we denote the topological ring of all analytic functions on Ω with the compact-open topology by $A(\Omega)$. By \mathbb{N} we mean the set of all natural numbers including zero. Also, for any integer $n \in \mathbb{N}$, $f^{(n)}$ is the n'th derivative of f. More information on analytic functions can be found in [8].

3. Topological co-maximality

Two integers are said to be *co-prime* if their only common natural divisor is 1, or equivalently, if every integer can be written as a sum of their products. Similarly, two ideals I and J of a ring R are said to be *co-maximal* if there is no proper ideal containing them both, or equivalently, if I + J = R. We make a natural step generalizing this definition for topological rings. Instead of requiring I + J to contain every element, we just want it to be dense in R.

Definition 3.1. Let R be a topological ring. We say that two ideals $I, J \leq R$ are topologically co-maximal (TCM) and write $I \perp J$ if there is no closed proper ideal containing them both. Equivalently, this can be formulated as: $\overline{I+J} = R$.

We also say that a family of ideals \mathcal{I} is *pairwise TCM* and write $\perp \mathcal{I}$ if any two distinct members are TCM.

If two ideals are co-maximal then they are topologically co-maximal. The converse is also true when R is discrete, but not in general.

Download English Version:

https://daneshyari.com/en/article/5777990

Download Persian Version:

https://daneshyari.com/article/5777990

Daneshyari.com