

Contents lists available at ScienceDirect

Topology and its Applications

CrossMark

www.elsevier.com/locate/topol

Virtual Special Issue – Dedicated to the 120th anniversary of the eminent Russian mathematician P.S. Alexandroff

Normal functors and hereditary paranormality

A.P. Kombarov

Mechanics-Mathematics Faculty, Moscow State University, 119991 Moscow, Russia

ARTICLE INFO

Article history: Received 27 April 2016 Accepted 24 July 2016 Available online 2 March 2017

MSC: 54B20 54B30 54D15 54E35

Keywords: Normal functor Compact space Hereditary paranormality Metrizability ABSTRACT

A topological space is said to be paranormal if every countable discrete collection of closed sets $\{D_n : n < \omega\}$ can be expanded to a locally finite collection of open sets $\{U_n : n < \omega\}$, i.e. $D_n \subset U_n$, and $D_m \cap U_n \neq \emptyset$ iff $D_m = D_n$. It is proved that if \mathcal{F} is a normal functor $\mathcal{F} : Comp \to Comp$ of degree ≥ 3 and the space $\mathcal{F}(X) \setminus X$ is hereditarily paranormal, then the compact space X is metrizable.

@ 2017 Elsevier B.V. All rights reserved.

Throughout this paper, all topological spaces are assumed to be regular. An ordinal is the set of smaller ordinals and a cardinal number is an initial ordinal. Other terminology and notations not defined in this paper can be found in [4].

P.S. Alexandroff and P.S. Urysohn [1] defined and studied the class of quasinormal spaces. A space is called quasinormal [1] or to have property D (in the sense of E.K. van Dowen [3]) if every countable closed discrete set has arbitrarily small closed neighborhoods. It is proved in ([3], Proposition 12.1) that the property of quasinormality is equivalent to the property that every countable discrete collection of singletons can be expanded to a discrete collection of open sets. A space is said to be paranormal (due to P. Nyikos [8]) if every countable discrete collection of closed sets $\{D_n : n < \omega\}$ can be expanded to a locally finite collection of open sets $\{U_n : n < \omega\}$, i.e. $D_n \subset U_n$, and $D_m \cap U_n \neq \emptyset$ iff $D_m = D_n$. Clearly, normal spaces and countably paracompact spaces are paranormal, and every paranormal space is quasinormal. A space X is hereditarily paranormal if every subspace of X is paranormal.

The well-known Tychonoff Plank $((\omega_1 + 1) \times (\omega + 1)) \setminus \{(\omega_1, \omega)\}$ is an example of a completely regular space without quasinormality.

E-mail address: apkombarov@gmail.com.

The next Lemma 1 contains the analogical example. Following [5], we denote by αN_{τ} (here τ is an infinite cardinal number) the Alexandroff compactification or the one-point compactification of a discrete set N_{τ} of cardinality τ .

Lemma 1. If the cardinal number τ is uncountable, then the space $((\alpha N_{\tau}) \times (\omega + 1)) \setminus \{(\tau, \omega)\}$ is not a quasinormal space and hence is not a paranormal space.

In 1989, Fedorchuk [5] proved the next Theorem 1.

Theorem 1. If X is a compact space, \mathcal{F} is a normal functor of degree ≥ 3 , and the compact space $\mathcal{F}(X)$ is hereditarily normal, then X is metrizable.

In 2000, Zhuraev [11] proved the Theorem 2.

Theorem 2. If X is a compact space, \mathcal{F} is a normal functor of degree ≥ 3 , and the space $\mathcal{F}(X) \setminus X$ is hereditarily countably paracompact, then X is metrizable.

Recall that a covariant functor $\mathcal{F} : Comp \to Comp$ acting in the category Comp of compact spaces and their continuous mappings is normal if \mathcal{F} has the following properties: the functor \mathcal{F} is continuous, i.e. \mathcal{F} is permutable with taking the limit of an inverse system; \mathcal{F} preserves weight; \mathcal{F} is monomorphic, i.e. it preserves the injectivity of mappings; \mathcal{F} is epimorphic, i.e. \mathcal{F} preserves the surjectivity of mappings; \mathcal{F} preserves intersections, i.e. $\mathcal{F}(\cap\{F_{\alpha} : \alpha \in A\}) = \cap\{\mathcal{F}(F_{\alpha}) : \alpha \in A\}$; \mathcal{F} preserves preimages; \mathcal{F} preserves singletons and the empty set [9].

Suppose that X is a compact space, \mathcal{F} is a normal functor, and $x \in \mathcal{F}(X)$. The degree of the point x is defined as the minimum positive integer n such that x belongs to the image $\mathcal{F}(f)$ for some mapping $f: K \to X$ of an n-point space K. If there exists no such a finite number n, then we assume that x has infinite degree. The degree of the functor \mathcal{F} is the maximum degree of all points $x \in \mathcal{F}(X)$ for all compact spaces X [9]. For a normal functor \mathcal{F} and for an arbitrary point $a \in \mathcal{F}(X)$, the support supp(a) is defined as follows [9]:

$$supp(a) = \cap \{Y \subset X : a \in \mathcal{F}(Y)\}.$$

For any natural n, the subfunctor \mathcal{F}_n of the functor \mathcal{F} is defined by the formula

$$\mathcal{F}_n(X) = \{ a \in \mathcal{F}(X) : |supp(a)| \le n \}.$$

Since $\mathcal{F}_1(X)$ is homeomorphic to X, we can assume that the space X lies in $\mathcal{F}(X)$.

Obviously, all above-mentioned conditions are satisfied by the operation of raising a compact space X to the third power $(X \to X^3; (f : X \to Y) \to (f^3 : X^3 \to Y^3))$, and the degree of this functor equals three; thus, the theorem of Fedorchuk is a generalization of the well-known Katětov theorem on the cube [6]. Zhuraev [11] replaced the assumption of the hereditary normality of the compact space $\mathcal{F}(X)$ in the Fedorchuk theorem with the hereditary countable paracompactness of $\mathcal{F}(X) \setminus X$, by analogy with the Zenor theorem on the cube [10]. The following Theorem 3, is a simultaneous generalization of the theorems of Fedorchuk and Zhuraev. Its proof is given below.

Theorem 3. If X is a compact space, \mathcal{F} is a normal functor of degree ≥ 3 , and the space $\mathcal{F}(X) \setminus X$ is hereditarily paranormal, then X is metrizable.

The following Lemma 2 is proved in [5].

Download English Version:

https://daneshyari.com/en/article/5777992

Download Persian Version:

https://daneshyari.com/article/5777992

Daneshyari.com