Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

On metric order in spaces of the form $\mathcal{F}(X)$

A.V. Ivanov

Chair of Geometry and Topology, Petrozavodsk State University, Russia

ARTICLE INFO

Article history: Received 14 January 2016 Accepted 9 October 2016 Available online xxxx

MSC: 54B20 54B30 54B99

Keywords: Metric order Capacitarian dimension Normal functor Superextension define lower and upper metric orders $\underline{o}(\xi)$ and $\overline{o}(\xi)$ as a numerical characteristic of an approximation of ξ by points $\xi_n \in \mathcal{F}_n(Y)$. If \mathcal{F} is the exponential functor exp

ABSTRACT

© 2017 Elsevier B.V. All rights reserved.

For a metrizable functor \mathcal{F} and a point $\xi \in \mathcal{F}(Y)$ (Y is a compact metric space) we

then $\underline{o}(\xi)$ and $\overline{o}(\xi)$ coincide, respectively, with classical lower and upper capacitarian dimensions $\underline{\dim}_B \xi$ and $\overline{\dim}_B \xi$ of a closed subset $\xi \subset Y$. We establish some properties

Pontryagin and Shnirelman [1] defined the metric order for any closed subset F of metric compact space (Y, ρ) as a numerical characteristic for an approximation of F by a sequence of finite subsets. In the first part of the paper we generalize this concept to any compact metric space X with an increasing sequence of closed subsets X_n such that the union $\cup X_n$ is dense in X. In such a way we define lower and upper metric orders $\underline{o}(q)$ and $\overline{o}(q)$ for any point $q \in X$.

of $o(\xi)$ and $\bar{o}(\xi)$ and pose several questions.

In the second part we consider metric orders in the following special case. Let \mathcal{F} be a metrizable functor in sense of V.V. Fedorchuk [2], let (Y, ρ) be a compact metric space and let $\rho_{\mathcal{F}}$ be an extension of ρ onto $\mathcal{F}(Y)$. We put $X = \mathcal{F}(Y), X_n = \mathcal{F}_n(Y), n \in N$ and consider upper and lower metric orders $\underline{o}^{\mathcal{F}}(\xi)$ and $\bar{o}^{\mathcal{F}}(\xi)$ for any point $\xi \in \mathcal{F}(Y)$. If \mathcal{F} is the exponential functor exp then $\underline{o}^{\mathcal{F}}(\xi)$ and $\bar{o}^{\mathcal{F}}(\xi)$ coincide, respectively, with classical lower and upper capacitarian dimensions $\underline{\dim}_B \xi$ and $\overline{\dim}_B \xi$ of a closed subset ξ . We prove that

$$\underline{o}^{\exp\circ\exp}(\xi) = \underline{\dim}_B(\cup\xi), \, \overline{o}^{\exp\circ\exp}(\xi) = \overline{\dim}_B(\cup\xi),$$

for any $\xi \in \exp(exp(Y))$ and pose several questions, concerning, in particular, metric orders in a superextension $\lambda(Y)$.

E-mail address: ivanov@petrsu.ru.

1. General definitions

Let (X, ρ) be a metric space and $\{X_n : n \in \mathbb{N}\}$ is a sequence of closed subsets of X such that $X_n \subset X_{n+1}$ and

$$Cl(\bigcup_{n\in\mathbf{N}}X_n)=X.$$

For each point $q \in X$ we define $E_n(q) = \rho(q, X_n)$. It is clear that

$$\lim_{n \to \infty} E_n(q) = 0$$

and $E_n(q) > 0$ for any *n* if

$$q \notin \bigcup_{n \in \mathbf{N}} X_n.$$

The question of the rate of convergence of sequence $E_n(q)$ depending on properties of a point q is the typical question in various theories of approximation.

It is possible to consider this question in another way. Let $\varepsilon > 0$ and $q \in X$. We set

$$N(q,\varepsilon) = \min\{n : \rho(q, X_n) \le \varepsilon\}.$$

If $q \notin \bigcup X_n$, then

$$\lim_{\varepsilon \to 0} N(q,\varepsilon) = \infty$$

and it is possible to study a rate of increasing of $N(q,\varepsilon)$ ($\varepsilon \to 0$). First of all it is interesting, for which $\alpha > 0$ there exists lower limit

$$\frac{\lim_{\varepsilon \to 0}}{\varepsilon^{\alpha 0}} \varepsilon^{\alpha N}(q, \varepsilon) = \underline{r}(q, \alpha)$$

or upper limit

$$\overline{\lim_{\varepsilon \to 0}} \ \varepsilon^{\alpha} N(q, \varepsilon) = \overline{r}(q, \alpha).$$

If $q \notin \bigcup X_n$ then $\underline{r}(q,0) = \overline{r}(q,0) = \infty$. If $\underline{r}(q,\alpha) = 0$ and $\alpha_1 > \alpha$ then $\underline{r}(q,\alpha_1) = 0$. The same is true for $\overline{r}(q,\alpha)$. We will define lower and upper metric order $\underline{o}(q)$ and $\overline{o}(q)$ of a point q in the following way:

$$\underline{o}(q) = \inf\{\alpha : \underline{r}(q,\alpha) = 0\} = \sup\{\alpha : \underline{r}(q,\alpha) = \infty\},\$$

$$\overline{o}(q) = \inf\{\alpha : \overline{r}(q,\alpha) = 0\} = \sup\{\alpha : \overline{r}(q,\alpha) = \infty\}.$$

It is clear that $0 \leq \underline{o}(q) \leq \overline{o}(q) \leq \infty$. If $q \in \bigcup X_n$, then $\underline{o}(q) = \overline{o}(q) = 0$.

Theorem 1. For any point $q \in X$

$$\underline{\varrho}(q) = \frac{\lim_{\varepsilon \to 0} \ln(N(q,\varepsilon))}{\ln(\frac{1}{\varepsilon})},\tag{1}$$

$$\bar{o}(q) = \overline{\lim_{\varepsilon \to 0}} \frac{\ln(N(q,\varepsilon))}{\ln(\frac{1}{\varepsilon})}.$$
(2)

Download English Version:

https://daneshyari.com/en/article/5777997

Download Persian Version:

https://daneshyari.com/article/5777997

Daneshyari.com