On metric order in spaces of the form $\mathcal{F}(X)$

CrossMark

A.V. Ivanov
Chair of Geometry and Topology, Petrozavodsk State University, Russia

A R T I C L E I N F O

Article history:
Received 14 January 2016
Accepted 9 October 2016
Available online xxxx

MSC:

54B20
54B30
54B99

Keywords:
Metric order
Capacitarian dimension
Normal functor
Superextension

Abstract

For a metrizable functor \mathcal{F} and a point $\xi \in \mathcal{F}(Y)$ (Y is a compact metric space) we define lower and upper metric orders $\underline{o}(\xi)$ and $\bar{o}(\xi)$ as a numerical characteristic of an approximation of ξ by points $\xi_{n} \in \mathcal{F}_{n}(Y)$. If \mathcal{F} is the exponential functor \exp then $\underline{o}(\xi)$ and $\bar{o}(\xi)$ coincide, respectively, with classical lower and upper capacitarian dimensions $\underline{\operatorname{dim}}_{B} \xi$ and $\overline{\operatorname{dim}}_{B} \xi$ of a closed subset $\xi \subset Y$. We establish some properties of $\underline{o}(\xi)$ and $\bar{o}(\xi)$ and pose several questions.

© 2017 Elsevier B.V. All rights reserved.

Pontryagin and Shnirelman [1] defined the metric order for any closed subset F of metric compact space (Y, ρ) as a numerical characteristic for an approximation of F by a sequence of finite subsets. In the first part of the paper we generalize this concept to any compact metric space X with an increasing sequence of closed subsets X_{n} such that the union $\cup X_{n}$ is dense in X. In such a way we define lower and upper metric orders $\underline{o}(q)$ and $\bar{o}(q)$ for any point $q \in X$.

In the second part we consider metric orders in the following special case. Let \mathcal{F} be a metrizable functor in sense of V.V. Fedorchuk [2], let (Y, ρ) be a compact metric space and let $\rho_{\mathcal{F}}$ be an extension of ρ onto $\mathcal{F}(Y)$. We put $X=\mathcal{F}(Y), X_{n}=\mathcal{F}_{n}(Y), n \in N$ and consider upper and lower metric orders $\underline{o}^{\mathcal{F}}(\xi)$ and $\bar{o}^{\mathcal{F}}(\xi)$ for any point $\xi \in \mathcal{F}(Y)$. If \mathcal{F} is the exponential functor \exp then $\underline{o}^{\mathcal{F}}(\xi)$ and $\bar{o}^{\mathcal{F}}(\xi)$ coincide, respectively, with classical lower and upper capacitarian dimensions $\operatorname{dim}_{B} \xi$ and $\operatorname{dim}_{B} \xi$ of a closed subset ξ. We prove that

$$
\underline{o}^{\exp \circ \exp }(\xi)=\underline{\operatorname{dim}}_{B}(\cup \xi), \bar{o}^{\exp \circ \exp }(\xi)={\operatorname{dim}_{B}(\cup \xi),}
$$

for any $\xi \in \exp (\exp (Y))$ and pose several questions, concerning, in particular, metric orders in a superextension $\lambda(Y)$.

[^0]
1. General definitions

Let (X, ρ) be a metric space and $\left\{X_{n}: n \in \mathbf{N}\right\}$ is a sequence of closed subsets of X such that $X_{n} \subset X_{n+1}$ and

$$
C l\left(\bigcup_{n \in \mathbf{N}} X_{n}\right)=X
$$

For each point $q \in X$ we define $E_{n}(q)=\rho\left(q, X_{n}\right)$. It is clear that

$$
\lim _{n \rightarrow \infty} E_{n}(q)=0
$$

and $E_{n}(q)>0$ for any n if

$$
q \notin \bigcup_{n \in \mathbf{N}} X_{n} .
$$

The question of the rate of convergence of sequence $E_{n}(q)$ depending on properties of a point q is the typical question in various theories of approximation.

It is possible to consider this question in another way. Let $\varepsilon>0$ and $q \in X$. We set

$$
N(q, \varepsilon)=\min \left\{n: \rho\left(q, X_{n}\right) \leq \varepsilon\right\} .
$$

If $q \notin \cup X_{n}$, then

$$
\lim _{\varepsilon \rightarrow 0} N(q, \varepsilon)=\infty
$$

and it is possible to study a rate of increasing of $N(q, \varepsilon)(\varepsilon \rightarrow 0)$. First of all it is interesting, for which $\alpha>0$ there exists lower limit

$$
\varliminf_{\varepsilon \rightarrow 0} \varepsilon^{\alpha} N(q, \varepsilon)=\underline{r}(q, \alpha)
$$

or upper limit

$$
\varlimsup_{\varepsilon \rightarrow 0} \varepsilon^{\alpha} N(q, \varepsilon)=\bar{r}(q, \alpha) .
$$

If $q \notin \cup X_{n}$ then $\underline{r}(q, 0)=\bar{r}(q, 0)=\infty$. If $\underline{r}(q, \alpha)=0$ and $\alpha_{1}>\alpha$ then $\underline{r}\left(q, \alpha_{1}\right)=0$. The same is true for $\bar{r}(q, \alpha)$. We will define lower and upper metric order $\underline{o}(q)$ and $\bar{o}(q)$ of a point q in the following way:

$$
\begin{aligned}
& \underline{o}(q)=\inf \{\alpha: \underline{r}(q, \alpha)=0\}=\sup \{\alpha: \underline{r}(q, \alpha)=\infty\}, \\
& \bar{o}(q)=\inf \{\alpha: \bar{r}(q, \alpha)=0\}=\sup \{\alpha: \bar{r}(q, \alpha)=\infty\} .
\end{aligned}
$$

It is clear that $0 \leq \underline{o}(q) \leq \bar{o}(q) \leq \infty$. If $q \in \cup X_{n}$, then $\underline{o}(q)=\bar{o}(q)=0$.
Theorem 1. For any point $q \in X$

$$
\begin{align*}
o(q) & =\varliminf_{\varepsilon \rightarrow 0} \frac{\ln (N(q, \varepsilon))}{\ln \left(\frac{1}{\varepsilon}\right)}, \tag{1}\\
\bar{o}(q) & =\varlimsup_{\varepsilon \rightarrow 0} \frac{\ln (N(q, \varepsilon))}{\ln \left(\frac{1}{\varepsilon}\right)} . \tag{2}
\end{align*}
$$

https://daneshyari.com/en/article/5777997

Download Persian Version:

https://daneshyari.com/article/5777997

Daneshyari.com

[^0]: E-mail address: ivanov@petrsu.ru.
 http://dx.doi.org/10.1016/j.topol.2017.02.051
 0166-8641/© 2017 Elsevier B.V. All rights reserved.

