

Contents lists available at ScienceDirect

Topology and its Applications

CrossMark

www.elsevier.com/locate/topol

Virtual Special Issue – Dedicated to the 120th anniversary of the eminent Russian mathematician P.S. Alexandroff

More absorbers in hyperspaces

Paweł Krupski^{a,*}, Alicja Samulewicz^b

^a Department of Computer Science, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
^b Institute of Mathematics, Faculty of Applied Mathematics, Silesian University of Technology,

ul. Kaszubska 23, 44-101 Gliwice, Poland

ARTICLE INFO

Article history: Received 30 April 2016 Accepted 23 July 2016 Available online 2 March 2017

MSC: primary 57N20 secondary 54H05, 54F15, 54F45

Keywords: Absorber Aposyndetic Borel set Coanalytic set Colocally connected Continuum C-space Hilbert cube Hilbert cube Hilbert cube manifold Hyperspace Infinite-dimensional space Locally connected Manifold Weakly infinite-dimensional space

ABSTRACT

The family of all subcontinua that separate a compact connected *n*-manifold X (with or without boundary), $n \geq 3$, is an F_{σ} -absorber in the hyperspace C(X) of nonempty subcontinua of X. If $D_2(F_{\sigma})$ is the small Borel class of spaces which are differences of two σ -compact sets, then the family of all (n-1)-dimensional continua that separate X is a $D_2(F_{\sigma})$ -absorber in C(X). The families of nondegenerate colocally connected or aposyndetic continua in I^n and of at least two-dimensional or decomposable Kelley continua are $F_{\sigma\delta}$ -absorbers in the hyperspace $C(I^n)$ for $n \geq 3$. The hyperspaces of all weakly infinite-dimensional continua and of C-continua of dimensions at least 2 in a compact connected Hilbert cube manifold X are Π_1^1 -absorbers in C(X). The family of all hereditarily infinite-dimensional compacta in the Hilbert cube I^{ω} is Π_1^1 -complete in $2^{I^{\omega}}$.

@ 2017 Elsevier B.V. All rights reserved.

1. Introduction

The theory of absorbing sets was well developed in the eighties and nineties of the last century (see [4] and [33]). Since any two absorbers in a Hilbert cube Q of a given Borel or projective class are homeomorphic via arbitrarily small ambient homeomorphisms of Q, it provides a powerful technique of characterizing some subspaces of the hyperspaces $Q = 2^X$ of all closed nonempty subsets of a nondegenerate Peano continuum X

* Corresponding author.

E-mail addresses: pawel.krupski@pwr.edu.pl (P. Krupski), Alicja.Samulewicz@polsl.pl (A. Samulewicz).

or Q = C(X) of all subcontinua of X (if X contains no free arcs). Nevertheless, the list of natural examples of subspaces of C(X) studied in continuum theory which are absorbers is not too long.

Let I = [0, 1] be the closed unit interval with the Euclidean metric. The following subspaces of respective hyperspaces are absorbers of the Borel class F_{σ} (otherwise known as cap-sets), so they are homeomorphic to the pseudo-boundary $B(I^{\omega}) = \{(x_i) \in I^{\omega} : \exists i (x_i \in \{0, 1\})\}$, a standard F_{σ} -absorber in the Hilbert cube I^{ω} :

Examples 1.1.

1. The subspaces $\mathcal{D}_n(X)$ of 2^X consisting of all compact of covering dimensions $\geq n \geq 1$ and $\mathcal{D}_{n+1}(X) \cap C(X)$ of C(X), where X is a locally connected continuum each of whose open non-empty subset has dimension $\geq n$ [7].

Initially, the absorbers were obtained for $X = I^{\omega}$ or X being the infinite product of nondegenerate locally connected continua and it was observed that the covering dimension can be replaced by more general integer-valued dimension functions (so called true dimensions) including cohomological dimensions [14, 16,18,19,21] and even by real-valued dimension functions such as the Hausdorff dimension [3,31].

- 2. The family of all decomposable continua in I^n , $n \ge 3$ [38].
- 3. The family of all compact subsets (subcontinua) with nonempty interiors in a locally connected nondegenerate continuum (containing no free arcs) [12].
- 4. The family of all compact subsets that block all subcontinua of a locally connected nondegenerate continuum which is not separated by any finite subset [22].
- 5. The subspace $\mathcal{F}(X) \subset 2^X$ of all finite subsets of X for $X = I^{\omega}$ [11]. In general, $\mathcal{F}(X)$ is not an F_{σ} -absorber in 2^X , as it is homeomorphic to the strongly countable-dimensional linear subspace l_2^f of l_2 spanned by the canonical orthonormal basis of l_2 if X is non-degenerate, connected, locally path-connected, strongly countable-dimensional and σ -compact [10]. The latter result was extended to non-separable spaces X, see [24,34,40].

Examples 1.2. Known $F_{\sigma\delta}$ -absorbers include two standard ones $(B(I^{\omega}))^{\omega}$ (in $(I^{\omega})^{\omega}$) and $\widehat{c}_0 = \{(x_i) \in I^{\omega} : \lim_i x_i = 0\}$ (in I^{ω}) [14] and

- 1. The subspace of 2^X (C(X)) of all infinite-dimensional (with respect to a true dimension) compacta (continua) for X being the countable infinite product of nondegenerate locally connected continua [14, 16,18,19,21].
- 2. The subspace of $C(I^n)$ of all locally connected subcontinua of I^n , $n \ge 3$ [20].
- 3. The subspaces of $C(I^2)$ of all arcs [6] and of all absolute retracts [8].

Examples 1.3. If $D_2(F_{\sigma})$ is the class of all subsets of the Hilbert cube that are differences of two F_{σ} -sets, then a standard $D_2(F_{\sigma})$ -absorber is the subset $B(I^{\omega}) \times s$ of $I^{\omega} \times I^{\omega}$ (where $s = I^{\omega} \setminus B(I^{\omega})$); its incarnation in $2^{I^{\omega}}$ is the family $\mathcal{D}_n(I^{\omega}) \setminus \mathcal{D}_{n+1}(I^{\omega}), n \geq 1$ [14].

Example 1.4. The subspace of $2^{\mathbb{R}^n}$, $n \geq 3$, of all compact ANR's in \mathbb{R}^n is a $G_{\delta\sigma\delta}$ -absorber [15] (recall that if $n \geq 2$ then the hyperspace $2^{\mathbb{R}^n}$ is homeomorphic to $I^{\omega} \setminus \{\text{point}\}$ [9]).

Let Π_1^1 and Σ_1^1 denote the classes of coanalytic and analytic sets, respectively. Concerning Π_1^1 -absorbers (coanalytic absorbers), the Hurewicz set \mathcal{H} of all countable closed subsets of I can be treated as a standard Π_1^1 -absorber in the hyperspace 2^I [5]. Other known examples of coanalytic absorbers we wish to recall here are:

Download English Version:

https://daneshyari.com/en/article/5778017

Download Persian Version:

https://daneshyari.com/article/5778017

Daneshyari.com