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We investigate the geometry of the family M of isometry classes of compact metric 
spaces, endowed with the Gromov–Hausdorff metric. We show that sufficiently small 
neighborhoods of generic finite spaces in the subspace of all finite metric spaces with 
the same number of points are isometric to some neighborhoods in the space RN

∞, 
i.e., in the space RN with the norm ‖(x1, . . . , xN )‖ = maxi |xi|. As a corollary, we 
get that each finite metric space can be isometrically embedded into M in such a 
way that its image belongs to a subspace consisting of all finite metric spaces with 
the same number k of points. If the initial space has n points, then one can take k
as the least possible integer with n ≤ k(k − 1)/2.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

By M we denote the space of all compact metric spaces (considered up to an isometry) endowed with 
the Gromov–Hausdorff metric. It is well-known that M is linear connected, complete, separable, but not 
proper. In a recent paper [1], A. Ivanov, N. Nikolaeva, and A. Tuzhilin have shown that M is geodesic. 
There are many other open questions concerning geometrical properties of M. S. Iliadis formulated the 
following problems.

Problem (1): is it true that M contains isometrically any compact metric space, in particular, any finite 
space?
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Problem (2): suppose that K is a compact metric space, L ⊂ K is its compact subspace, and there exist 
isometric embeddings of L and K into M. Is it true that each isometric embedding L → M can be 
extended to an isometric embedding K → M?

It is easy to verify that the answer to Problem (2) is negative (see Section 3). Concerning Problem (1), we 
show the following: each finite metric space can be isometrically embedded into M. Moreover, we construct 
such an embedding with its image belonging to the subspace of all finite metric spaces with k points: if the 
initial space has n points, then one can choose k as the least possible integer such that n ≤ k(k − 1)/2.

The construction of such embedding is based on our results concerning the local geometry of the fam-
ily of finite metric spaces with fixed number of points considered in sufficiently small neighborhoods of 
generic spaces. More precisely, we show that such neighborhoods are isometric to some neighborhoods of 
the corresponding points in the space Rk

∞, i.e., in the space Rk with the norm 
∥∥(x1, . . . , xk)

∥∥ = maxi |xi|.

2. Preliminaries

Let X be an arbitrary metric space. By |xy| we denote the distance between points x and y in X. For 
every point x ∈ X and a real number r > 0 by Ur(x) we denote the open ball of radius r centered at x; for 
every nonempty A ⊂ X and real number r > 0 we put Ur(A) = ∪a∈AUr(a).

For nonempty A, B ⊂ X, let us put

dH(A,B) = inf
{
r > 0 : A ⊂ Ur(B)&B ⊂ Ur(A)

}
.

This value is called the Hausdorff distance between A and B. It is well-known [2] that the restriction of the 
Hausdorff distance to the family of all closed bounded subsets of X is a metric.

Let X and Y be metric spaces. A triple (X ′, Y ′, Z) that consists of a metric space Z and its subsets X ′

and Y ′ isometric to X and Y , respectively, is called a realization of the pair (X, Y ). The Gromov–Hausdorff 
distance dGH(X, Y ) between X and Y is the greatest lower bound of the real numbers r such that there 
exists a realization (X ′, Y ′, Z) of the pair (X, Y ) with dH(X ′, Y ′) ≤ r. It is well-known [2] that the dGH

restricted to the family M of isometry classes of compact metric spaces is a metric.
Recall that a relation between sets X and Y is a subset of the Cartesian product X×Y . By P(X, Y ) we 

denote the set of all nonempty relations between X and Y . If πX : (x, y) �→ x and πY : (x, y) �→ y are the 
canonical projections, then their restrictions to each σ ∈ P(X, Y ) are denoted in the same manner.

We consider each relation σ ∈ P(X, Y ) as a multivalued mapping, whose domain may be less than the 
whole X. By analogy with mappings, for every x ∈ X its image σ(x) = {y ∈ Y | (x, y) ∈ σ} is defined, and 
for every y ∈ Y its preimage σ−1(y) = {x ∈ X | (x, y) ∈ σ} is defined also; for every A ⊂ X its image σ(A)
is the union of the images of all the elements from A, and, similarly, for every B ⊂ Y its preimage is the 
union of the preimages of all the elements from B.

A relation R between X and Y is called a correspondence, if the restrictions of the canonical projections 
πX and πY onto R are surjections. By R(X, Y ) we denote the set of all correspondences between X and Y .

Let X and Y be metric spaces, then for every relation σ ∈ P(X, Y ) its distortion disσ is defined as

disσ = sup
{∣∣|xx′| − |yy′|

∣∣ : (x, y) ∈ σ, (x′, y′) ∈ σ
}
.

The following result is well-known.

Proposition 2.1 ([2]). For any metric spaces X and Y we have

dGH(X,Y ) = 1
2 inf

{
disR | R ∈ R(X,Y )

}
.
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