ELSEVIER

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Virtual Special Issue – International Conference on Topology, Messina (ICTM2015)

Inclusions of characterized subgroups

Università degli Studi di Udine – Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Via delle Scienze 206, 33100 Udine, Italy

ARTICLE INFO

Article history: Received 13 December 2015 Received in revised form 30 November 2016 Accepted 14 December 2016 Available online 9 February 2017

On the occasion of Filippo Cammaroto's 65th birthday

MSC: 22A10 54H11 20K45 11K06 43A40 43A40

Keywords: Characterized subgroups Converging sequence of reals TB-sequences Precompact group topology

1. Introduction

Let G be a topological abelian group and denote by \widehat{G} the group of all continuous characters $\chi : G \to \mathbb{T}$, where $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ is endowed with the compact quotient topology inherited from \mathbb{R} . Following [19], for a sequence $\mathbf{u} = (u_n)_{n \in \mathbb{N}}$ in \widehat{G} , let

$$s_{\mathbf{u}}(G) := \left\{ x \in G : u_n(x) \to 0 \right\}.$$

A subgroup H of G is called *characterized* if $H = s_{\mathbf{u}}(G)$ for some sequence \mathbf{u} in \widehat{G} .

* Corresponding author.

http://dx.doi.org/10.1016/j.topol.2017.02.004

ABSTRACT

A subgroup H of \mathbb{R} is characterized if $H = \tau_{\mathbf{u}}(\mathbb{R}) := \{x \in \mathbb{R} : u_n x \to 0 \mod \mathbb{Z}\}$ for some sequence \mathbf{u} in \mathbb{R} . Given two sequences \mathbf{u} and \mathbf{v} in \mathbb{R} , we find conditions under which $\tau_{\mathbf{u}}(\mathbb{R})$ is contained or not in $\tau_{\mathbf{v}}(\mathbb{R})$. As a by-product of our main theorems, we find a known result by Eliaš on inclusions of characterized subgroups of \mathbb{T} , motivated by problems in harmonic analysis.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

CrossMark

E-mail addresses: giuseppina.barbieri@uniud.it (G. Barbieri), anna.giordanobruno@uniud.it (A. Giordano Bruno), hans.weber@uniud.it (H. Weber).

^{0166-8641/© 2017} The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

The characterized subgroups were considered almost exclusively for metrizable compact abelian groups (e.g., see [5,18]); only recently, the case of general compact abelian groups was given full attention in [13], and the case of abelian topological groups in [16] (see also [24,25]).

The fundamental and starting case remains when $G = \mathbb{T}$ (e.g., see [6,27,29]); the characterized subgroups of \mathbb{T} were studied also in relation to Diophantine approximation, dynamical systems and ergodic theory (see [6,30,35] and the survey [24]).

Moreover, it is worth pointing out that, since $\widehat{\mathbb{T}}$ can be identified with \mathbb{Z} , we may assume that a sequence **u** in $\widehat{\mathbb{T}}$ is a sequence in \mathbb{Z} . Then $s_{\mathbf{u}}(\mathbb{T})$ coincides with the subgroup

$$t_{\mathbf{u}}(\mathbb{T}) := \{ x \in \mathbb{T} : u_n x \to 0 \}$$

of all topologically **u**-torsion elements of \mathbb{T} . The concept of topologically **u**-torsion element generalizes that of topologically torsion element (for $u_n = n$!) and that of topologically *p*-torsion element (for $u_n = p^n$), which were introduced to study the structure of topological groups and in particular of locally compact abelian groups (see [2,8,20,33] and the survey [11]). A complete description of the subgroups $t_{\mathbf{u}}(\mathbb{T})$ was found in [17,12] for sequences **u** in \mathbb{N} such that u_n divides u_{n+1} for every $n \in \mathbb{N}$.

We consider here the characterized subgroups of \mathbb{R} . Since $\widehat{\mathbb{R}}$ is topologically isomorphic to \mathbb{R} , we can identify a sequence **u** in $\widehat{\mathbb{R}}$ with a sequence in \mathbb{R} ; then $s_{\mathbf{u}}(\mathbb{R})$ coincides with the subgroup

$$\tau_{\mathbf{u}}(\mathbb{R}) := \{ x \in \mathbb{R} : u_n x \to 0 \mod \mathbb{Z} \}.$$

We would like to underline that, if **u** is a sequence in \mathbb{Z} , the examination of $\tau_{\mathbf{u}}(\mathbb{R})$ includes that of $t_{\mathbf{u}}(\mathbb{T})$; in fact, in this case $\tau_{\mathbf{u}}(\mathbb{R}) = \pi^{-1}(t_{\mathbf{u}}(\mathbb{T}))$, where $\pi : \mathbb{R} \to \mathbb{T}$ is the canonical projection.

Characterized subgroups of \mathbb{R} were studied in relation to uniform distribution of sequences modulo \mathbb{Z} by Kuipers and Niederreiter in the book [28], where [28, Theorem 7.8] shows that $\tau_{\mathbf{u}}(\mathbb{R})$ has Lebesgue measure zero if \mathbf{u} is a sequence in \mathbb{R} not converging to 0 in \mathbb{R} (they give credit to Schoenberg for this result, see [32]). Moreover, Borel proved in [7, Proposition 2] that if $H = \tau_{\mathbf{v}}(\mathbb{R})$ is a non-trivial proper characterized subgroup of \mathbb{R} , then there exist $\gamma \in \mathbb{R}$ and a strictly increasing sequence \mathbf{u} in \mathbb{N} such that $\gamma H = \tau_{\mathbf{u}}(\mathbb{R})$. This underlines the strict relation between characterized subgroups of \mathbb{R} and characterized subgroups of \mathbb{T} . Borel proved also that every countable subgroup of \mathbb{R} is characterized and left open the general question of a complete description of the characterized subgroups of \mathbb{R} .

In this paper, under some restrictions on the sequences, we find conditions ensuring the inclusion of one characterized subgroup of \mathbb{R} into another characterized subgroup of \mathbb{R} . In particular, we consider characterized subgroups $\tau_{\mathbf{u}}(\mathbb{R})$ of \mathbb{R} always under the assumption that \mathbf{u} is in $\mathbb{R} \setminus \{0\}$ and $|q_n^{\mathbf{u}}| \to +\infty$, where

$$q_n^{\mathbf{u}} := \frac{u_n}{u_{n-1}} \ (n \in \mathbb{N}) \text{ and } u_0 = 1.$$

Thus, the cardinality of $\tau_{\mathbf{u}}(\mathbb{R})$ is \mathfrak{c} (see Remark 2.1). Moreover, we can always assume that such sequences are in \mathbb{R}_+ , since for any sequence \mathbf{w} in \mathbb{R} we have $\tau_{\mathbf{w}}(\mathbb{R}) = \tau_{|\mathbf{w}|}(\mathbb{R})$ where $|\mathbf{w}| := (|w_n|)_{n \in \mathbb{N}}$.

The problem of reciprocal inclusions of characterized subgroups has the following topological motivation, described in more detail in Section 2. Recall that a topological abelian group G is totally bounded if for every non-empty open set U in G there exists a finite subset F of G such that G = U + F; moreover, G is precompact if it is Hausdorff and totally bounded. For two sequences \mathbf{u} and \mathbf{v} in \mathbb{R} such that $|q_n^{\mathbf{u}}| \to +\infty$, we see in Corollary 2.7 that the condition $\tau_{\mathbf{u}}(\mathbb{R}) \notin \tau_{\mathbf{v}}(\mathbb{R})$ is equivalent to the existence of a non-metrizable precompact group topology \mathcal{T} on \mathbb{R} such that $u_n \to 0$ (\mathcal{T}) and $v_n \not\to 0$ (\mathcal{T}) (i.e., $u_n \to 0$ in (\mathbb{R}, \mathcal{T}) and $v_n \not\to 0$ in (\mathbb{R}, \mathcal{T})), and also to the fact that $v_n \not\to 0$ ($\sigma_{\mathbf{u}}$) where $\sigma_{\mathbf{u}}$ is the finest precompact group topology such that $u_n \to 0$ ($\sigma_{\mathbf{u}}$) (see (2.1) for the definition of $\sigma_{\mathbf{u}}$). The topology $\sigma_{\mathbf{u}}$ considered in [4,19] was investigated in [14], where also ss-precompact groups were studied (a precompact group topology \mathcal{T} on an abelian group G is ss-precompact if there exists a sequence \mathbf{u} in G such that $\mathcal{T} = \sigma_{\mathbf{u}}$). Download English Version:

https://daneshyari.com/en/article/5778035

Download Persian Version:

https://daneshyari.com/article/5778035

Daneshyari.com