Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

$\frac{1}{3}$ -homogeneous dendrites

Gerardo Acosta^{*}, Yaziel Pacheco-Juárez

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, D.F. 04510, Mexico

ABSTRACT

ARTICLE INFO

Article history: Received 24 September 2015 Received in revised form 3 January 2017Accepted 4 January 2017 Available online 18 January 2017

MSC: primary 54F15, 54F50 secondary 54B20, 54C10

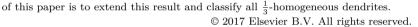
Keywords: ¹/₃-homogeneous continua Continuum Dendrite Hyperspace Local connecteness Order of a point

1. Introduction

For a topological space X, we denote by $\mathcal{H}(X)$ the group of homeomorphisms of X onto itself. For $n \in \mathbb{N}$, a space X is said to be $\frac{1}{n}$ -homogeneous provided that there are exactly n orbits for the action of $\mathcal{H}(X)$ on X. Given $x \in X$, the set $Orb_X(x) = \{h(x) : h \in \mathcal{H}(X)\}$ is called the *orbit of* x in X. More general, a nonempty subset O of X is said to be an *orbit of* X if there is $x \in X$ such that $O = \operatorname{Orb}_X(x)$. If O is an orbit of X, then $y, z \in O$ if and only if there exists a homeomorphism $h: X \to X$ such that h(y) = z. It is not difficult to see that the collection $\Re(X) = \{ \operatorname{Orb}_X(x) \colon x \in X \}$ is a partition of X. Hence, for $n \in \mathbb{N}$, X is $\frac{1}{n}$ -homogeneous if and only if the cardinality of the collection $\Re(X)$ is exactly n. Such natural number n is also called the *degree of homogeneity* of X.

A continuum is a nondegenerate compact connected metric space. An arc is a space homeomorphic to the interval [0, 1]. A simple closed curve is a space homeomorphic to the unit circle S^1 in \mathbb{R}^2 . A Cantor set is a

Corresponding author.



A continuum is a nondegenerate compact connected metric space. A dendrite is a

locally connected continuum containing no simple closed curves. A continuum X

is said to be $\frac{1}{3}$ -homogeneous if there exist three nonempty and mutually disjoint

subsets O_1, O_2 and O_3 of X such that $X = O_1 \cup O_2 \cup O_3$ and for each $x, y \in X$ there

exists a homeomorphism $h: X \to X$ such that h(x) = y if and only if $x, y \in O_i$ for

some $i \in \{1, 2, 3\}$. In 2006 V. Neumann-Lara, P. Pellicer-Covarrubias, and I. Puga showed that a dendrite X is $\frac{1}{2}$ -homogeneous if and only if X is an arc. The purpose

and i Applicatior

E-mail addresses: gacosta@matem.unam.mx (G. Acosta), yazi28@hotmail.com (Y. Pacheco-Juárez).

space homeomorphic to the standard middle-third Cantor set. A *dendrite* is a locally connected continuum containing no simple closed curves.

For $n \in \mathbb{N} - \{1\}$, the study of $\frac{1}{n}$ -homogeneous continua formally started in 1989 with the work done by H. Patkowska in [21], in which the term $\frac{1}{n}$ -homogeneous is coined and $\frac{1}{2}$ -homogeneous polyhedra are classified. Without an explicit use of such term, in 1969 J. Krasinkiewicz proved in [11] that the universal Sierpiński curve is $\frac{1}{2}$ -homogeneous. From 2006 to recent dates new results concerning $\frac{1}{n}$ -homogeneous continua have appeared in the literature, most of them involving the research of P. Pellicer-Covarrubias either alone or in collaboration with other researchers (see [10,14,15,17-20,22,23] and [24]). Some other papers dealing with $\frac{1}{n}$ -homogeneous continua are [3-5] and [6].

In [20, Lemma 3.5] it is shown that a dendrite X is $\frac{1}{2}$ -homogeneous if and only if X is an arc. The purpose of this paper is to extend this result and classify $\frac{1}{3}$ -homogeneous dendrites (see Theorem 7.16).

The paper is divided into seven sections. After this Introduction, in Section 2 we present some notions, notation and general results that we will use in the rest of the paper. In Section 3 we present some properties of dendrites that we require for the classification of $\frac{1}{3}$ -homogeneous dendrites. In Section 4 we present some results that involve $\frac{1}{3}$ -homogeneous dendrites. In this section we show that a $\frac{1}{3}$ -homogeneous dendrite has either one ramification point or infinitely many ramification points (see Theorem 4.2). We also show, among other results, that all dendrites with only one ramification point are $\frac{1}{3}$ -homogeneous. In Section 5 we classify all $\frac{1}{3}$ -homogeneous dendrites without free arcs (see Theorem 5.3). In Section 6 we classify all $\frac{1}{3}$ -homogeneous dendrites with free arcs, infinitely many ramification points and whose set of end points is closed (see Theorem 6.6). Finally, in Section 7, we classify all $\frac{1}{3}$ -homogeneous dendrites with free arcs, infinitely many ramification points (see Theorem 7.15). In this way we obtain the classification of all $\frac{1}{3}$ -homogeneous dendrites (see Theorem 7.16). For notions not defined here we refer the reader to [9].

2. General notions

For a topological space X and $A \subset X$, the symbols $\operatorname{Cl}_X(A)$, $\operatorname{Int}_X(A)$ and $\operatorname{Bd}_X(A)$ denote the closure, the interior and the boundary of A in X, respectively. If a sequence $\{x_n\}_n$ of points of X converges to an element $x \in X$, we write either $x_n \to x$ or $\lim_{n\to\infty} x_n = x$. The cardinality of A is denoted by |A| and its diameter by diam(A). For a set Y, the identity function on Y is denoted by 1_Y .

A topological space X is said to be σ -connected if X cannot be written as the union of more than one and at most countably infinitely many nonempty, mutually disjoint, closed subsets.

A *finite graph* is a continuum which can be written as the union of finitely many arcs, any two of which are either disjoint or intersect in one or both of their end points. A *tree* is a finite graph that contains no simple closed curves.

Let X be a continuum and $p \in X$. We say that p is a cut point of X if the set $X - \{p\}$ is not connected. If β is a cardinal number, then we say that p is of order less than or equal to β or that p has order less than or equal to β , written $\operatorname{ord}_X(p) \leq \beta$, if for each open neighborhood U of p there exists an open neighborhood V of p such that $V \subset U$ and $|\operatorname{Bd}_X(V)| \leq \beta$. We say that p is of order β or that p has order β , written $\operatorname{ord}_X(p) = \beta$, if $\operatorname{ord}_X(p) \leq \beta$ and for each cardinal number α so that $\alpha < \beta$, it follows that $\operatorname{ord}_X(p) \not\leq \alpha$. We say that p is an end point of X if $\operatorname{ord}_X(p) = 1$, a ramification point of X if $\operatorname{ord}_X(p) > 2$ and an ordinary point if $\operatorname{ord}_X(p) = 2$. We denote by E(X), R(X), O(X) and $\operatorname{Cut}(X)$ the set of end points of X, the set of ramification points of X, the set of ordinary points of X and the set of cut points of X, respectively. If X is an arc and $f: [0,1] \to X$ is a homeomorphism, then $E(X) = \{f(0), f(1)\}$.

If X and Y are continua and $h: X \to Y$ is a homeomorphism then, for each $p \in X$ we have $\operatorname{ord}_X(p) = \operatorname{ord}_Y(h(p))$. Hence h(E(X)) = E(Y), h(O(X)) = O(Y) and h(R(X)) = R(Y). This implies that if the sets E(X), O(X) and R(X) are nonempty, then the degree of homogeneity of X is greater than or equal to three.

Download English Version:

https://daneshyari.com/en/article/5778061

Download Persian Version:

https://daneshyari.com/article/5778061

Daneshyari.com