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In set theory without the Axiom of Choice (AC), we study the deductive strength of 
variants of the Principle of Consistent Choices (PCC) and their relationship with the 
minimal cover property, the 2-compactness of generalized Cantor cubes, and with 
certain weak choice principles. (Complete definitions are given in Section “Notation 
and terminology”.) Among other results, we establish the following:

1. “For every infinite set X, the generalized Cantor cube 2X has the minimal 
cover property” (MCP) implies “PCC restricted to families of 2-element sets” 
(F2), which in turn implies “for every infinite set X, 2X is 2-compact” (Q(2)). 
Moreover, ‘MCP implies F2’ is not reversible in ZFA (i.e., ZF, the Zermelo–
Fraenkel set theory minus AC, with the Axiom of Extensionality weakened in 
order to permit the existence of atoms).
The above results strengthen related results in Howard–Tachtsis “On the 
minimal cover property in ZF” and “On the set-theoretic strength of the 
n-compactness of generalized Cantor cubes”.

2. “Every Dedekind-finite set is finite” (DF = F) implies the Principle of Partial 
Consistent Choices (PPCC) – the latter principle being introduced here – which 
in turn implies ACℵ0

fin (i.e., the axiom of choice for denumerable families of non-
empty finite sets). None of the previous implications is reversible in ZF.

3. The Principle of Countable Consistent Choices (PCCℵ0 ), which is introduced 
here, is equivalent to ACℵ0

fin .
4. Rado’s Lemma (RL) + “every infinite set has an infinite linearly orderable 

subset” implies PPCC. In addition, RL does not imply PPCC in ZFA, PPCC
does not imply RL in ZF, and PPCC does not imply “every infinite set has an 
infinite linearly orderable subset” in ZFA.

5. PPCC does not imply “there are no amorphous sets” in ZFA.
6. F2 implies “there are no amorphous sets” and the implication is not reversible 

in ZF. This clarifies the relationship between the latter two statements, whose 
status is mentioned as unknown in Howard–Rubin “Consequences of the Axiom 
of Choice”.

7. “Every infinite partially ordered set has either an infinite chain or an infinite 
antichain” (CAC) does not imply X, where X ∈ {PPCC, F2}, in ZF. In addition, 
F2 does not imply CAC in ZFA.
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1. Notation and terminology

Below, we list the definitions of notions and principles, as well as their notations, which shall be used in 
the sequel.

Definition 1. A binary relation ≤ on a set P is called a partial order on P if ≤ is reflexive, anti-symmetric, 
and transitive. The ordered pair (P, ≤) is called a partially ordered set, or a partial order, or simply a poset.

A linearly ordered set is a poset (P, ≤) such that ∀p ∈ P , ∀q ∈ P , p ≤ q or q ≤ p.
Let (P, ≤) be a poset.
(a) A subset C ⊆ P is called a chain in P if (C, ≤� C) is linearly ordered.
(b) A subset A ⊆ P is called an antichain in P if any two distinct elements a, b ∈ A are incomparable, 

i.e., a � b and b � a.

Definition 2.

1. A set X is called Dedekind-finite if there is no one-to-one mapping f : ω → X. Equivalently, X is 
Dedekind-finite if there is no one-to-one mapping from X into a proper subset of X. If X is not 
Dedekind-finite, then X is called Dedekind-infinite.

2. An infinite set X (i.e., there is no bijection f : X → n for any natural number n) is called amorphous
if X cannot be expressed as a disjoint union of two infinite subsets.

3. If X is a set and n ∈ ω, then [X]n is the set of all n-element subsets of X and [X]<ω =
⋃
{[X]k : k ∈ ω}

is the set of all finite subsets of X.

Definition 3. Let (Xi, Ti)i∈I be an infinite family of topological spaces and let X =
∏

i∈I Xi be the Tychonoff 
product of the Xi’s. Let n ∈ ω \ {0}.

A basic open set U of X is called n-basic open set if there exists a set J ∈ [I]n and open sets Uj in Xj , 
j ∈ J , such that U =

∏
j∈J Uj ×

∏
i∈I\J Xi. The complement of an n-basic open set is called an n-basic 

closed set.
X is called n-compact if every cover U consisting of n-basic open sets has a finite subcover. Equivalently, 

X is n-compact if every family of n-basic closed sets with the finite intersection property (fip) has a 
non-empty intersection.

For all i ∈ I, let Xi = 2 (= {0, 1}) and let Ti be the discrete topology on Xi. Adopting the terminology of 
[11], the Tychonoff product 2I is called a generalized Cantor cube. The collection BI = {[p] : p ∈ Fn(I, 2)}, 
where Fn(I, 2) is the set of all finite partial functions from I into 2, i.e., Fn(I, 2) = {p: p is a function, 
dom(p) ∈ [I]<ω, ran(p) ⊆ 2}, and [p] = {f ∈ 2I : p ⊂ f}, is the standard clopen (i.e., simultaneously 
closed and open) base for the product topology on 2I . For every k ∈ ω \ {0}, let Bk

I = {[p] ∈ BI : |p| = k}. 
According to the above terminology, the elements of Bk

I , k ∈ ω \ {0}, are k-basic clopen sets of 2X . For 
simplicity, we sometimes denote a 1-basic clopen set [{(i, α)}], i ∈ I, α ∈ 2, by 〈i, α〉 (the latter notation 
for 1-basic clopen sets has also been used in [12]).

It is clear that BI =
⋃
{Bk

I : k ∈ ω \ {0}} and that 2I is k-compact if and only if every cover U ⊂ Bk
I of 

2I has a finite subcover.

Definition 4. For each n ∈ ω \ {0}, Q(n) denotes the statement “for every infinite set I, the generalized 
Cantor cube 2I is n-compact”. The principle Q(n) was introduced in Keremedis–Tachtsis [14].
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