On the 3-dimensional invariant for cyclic contact branched coverings

Tetsuya Ito ${ }^{1}$
Department of Mathematics, Graduate School of Science, Osaka University, 1-1 Machikaneyama
Toyonaka, Osaka 560-0043, Japan

A R T I C L E I N F O

Article history:
Received 27 July 2016
Accepted 8 November 2016
Available online 15 November 2016

$M S C$:

primary 57 M 27
secondary 53D35, 57R17

Keywords:

Contact branched covering
3-dimensional invariant

Abstract

We give a formula of the 3-dimensional invariant for a cyclic contact branched covering of the standard contact S^{3}.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let $\widetilde{M} \rightarrow M$ be a branched covering of a 3-manifold M, branched along a link $K \subset M$. When M has a contact structure ξ and K is a transverse link in the contact 3-manifold $(M, \xi), \widetilde{M}$ has a contact structure $\widetilde{\xi}$ which is a perturbation of the pull-back $\pi^{*} \xi$. Such a contact structure is unique up to isotopy, and we call the contact 3 -manifold $(\widetilde{M}, \widetilde{\xi})$ the contact branched covering of (M, ξ), branched along the transverse link K.

Let (M, ξ) be a p-fold cyclic contact branched covering of $\left(S^{3}, \xi_{s t d}\right)$ (the standard contact S^{3}), branched along a transverse link K. In [5, Theorem 1.4], it is shown that the Euler class $e(\xi)$ is zero, and the 3 -dimensional invariant $d_{3}(\xi) \in \mathbb{Q}$ (see [3] for definition) only depends on a topological link type of K and its self-linking number. However, no explicit formula of $d_{3}(\xi)$ had been given and it is not an easy task to compute $d_{3}(\xi)$ when p is large or K is complicated.

[^0]

Fig. 1. Page S of the open book (S, ψ) inside S^{3}.

In this note, we show a direct formula of $d_{3}(\xi)$ in terms of its branch locus K.
Theorem 1.1. If a contact 3-manifold (M, ξ) is a p-fold cyclic contact branched covering of $\left(S^{3}, \xi_{s t d}\right)$, branched along a transverse link K, then

$$
d_{3}(\xi)=-\frac{3}{4} \sum_{\omega: \omega^{p}=1} \sigma_{\omega}(K)-\frac{p-1}{2} s l(K)-\frac{1}{2} p .
$$

Here $\sigma_{\omega}(K)$ denotes the Tristram-Levine signature, the signature of $(1-\omega) A+(1-\bar{\omega}) A^{T}$, where A denotes the Seifert matrix for K, and sl(K) denotes the self-linking number.

Thus, our formula tells us that $d_{3}(\xi)$ actually only depends on the concordance class of K and the self-linking number. By the slice Bennequin inequality [7], it also shows that the smooth 4 -genus $g_{4}(K)$ of K gives a lower bound of $d_{3}(\xi)$.

Corollary 1.2. If a contact 3-manifold (M, ξ) is a p-fold cyclic contact branched covering of $\left(S^{3}, \xi_{\text {std }}\right)$ branched along K, then $d_{3}(\xi) \geq-\frac{5}{2}(p-1) g_{4}(K)-\frac{1}{2}$.

2. Proof

Proof of Theorem 1.1. Let (M, ξ) be a p-fold cyclic contact branched covering, branched along a transverse link K in $\left(S, \xi_{s t d}\right)$. We put the transverse link K as a closed braid, the closure of an m-braid α (with respect to the disk open book decomposition for $\left(S^{3}, \xi_{s t d}\right)$).

Let (S, ψ) be the open book decomposition of $\left(S^{3}, \xi_{s t d}\right)$, whose binding is the (p, m)-torus link. Inside S^{3}, the page S is an obvious Seifert surface of the (p, m)-torus link which we view as the closure of the m-braid $\left(\sigma_{1} \cdots \sigma_{m-1}\right)^{p}$ as we illustrate in Fig. 1.

Topologically, the page S is the p-fold cyclic branched covering of the disk D^{2}, branched along m-points. Let $\pi: B_{m}=M C G\left(D^{2} \backslash\{m\right.$ points $\left.\}\right) \rightarrow M C G(S)$ be the map induced by the branched covering map, which is written by $\pi\left(\sigma_{i}\right)=D_{i, 1} \cdots D_{i, p-1}\left[5\right.$, Lemma 3.1]. Here $D_{i, j}$ denotes the right-handed Dehn twist along the curve $C_{i, j}$ on S, given in Fig. 1. (Here we are assuming that $M C G(S)$ acts on S from left, so $D_{i, 1} \cdots D_{i, p-1}$ means $D_{i, p-1}$ comes first and $D_{i, 1}$ last.)

An important observation is that in $\left(S^{3}, \xi_{s t d}\right)$, the curves $C_{i, j}$ are realized as the Lergendrian unknot with $t b=-1$, rot $=0$.

By using $D_{i, j}$, the monodromy ψ is written by

$$
\psi=\pi\left(\sigma_{m-1} \cdots \sigma_{2} \sigma_{1}\right)=\left(D_{m-1,1} \cdots D_{m-1, p-1}\right) \cdots\left(D_{2,1} \cdots D_{2, p-1}\right)\left(D_{1,1} \cdots D_{1, p-1}\right) .
$$

Also, ($S, \phi=\pi(\alpha))$ gives an open book decomposition of (M, ξ).
First we draw the surgery diagram of (M, ξ) from its open book decomposition (S, ϕ), following the discussion in [5, Section 3]. We take a factorization of the braid $\left(\sigma_{1}^{-1} \cdots \sigma_{m-1}^{-1}\right) \alpha$

$$
\begin{equation*}
\left(\sigma_{1}^{-1} \cdots \sigma_{m-1}^{-1}\right) \alpha=\sigma_{i_{1}}^{\varepsilon_{1}} \cdots \sigma_{i_{n}}^{\varepsilon_{n}} \quad\left(\varepsilon_{j} \in\{ \pm 1\}, i_{j} \in\{1, \ldots, m-1\}\right) \tag{2.1}
\end{equation*}
$$

https://daneshyari.com/en/article/5778070

Download Persian Version:
https://daneshyari.com/article/5778070

Daneshyari.com

[^0]: E-mail address: tetito@math.sci.osaka-u.ac.jp.
 URL: http://www.math.sci.osaka-u.ac.jp/~tetito/.
 1 The author was partially supported by JSPS KAKENHI, Grant Number 15K17540.

