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We derive new lower bound for the characteristic rank of the canonical 3-plane 
bundle γ̃n,3 over the oriented Grassmann manifold G̃n,3 ∼= SO(n)/(SO(3) ×
SO(n− 3)) for all n in range 2t + 2t−1 ≤ n ≤ 2t+1 − 4, t ≥ 3. Using this knowledge 
we determine the Z2-cup-length of G̃2t+2t−1+1,3 and G̃2t+2t−1+2,3, verifying the 
corresponding claim of T. Fukaya’s conjecture.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

The characteristic rank of a manifold was introduced by Korbaš [5] and later generalized by Naolekar 
and Thakur [9] to the characteristic rank of a vector bundle defined as follows.

Definition 1.1. Let X be a connected, finite CW-complex and ξ a real vector bundle over X. The charac-
teristic rank of the vector bundle ξ, charrank(ξ), is the greatest integer q, 0 ≤ q ≤ dim(X), such that every 
cohomology class in Hj(X; Z2) for 0 ≤ j ≤ q can be expressed as a polynomial in the Stiefel–Whitney 
classes wi(ξ) of ξ.

In this paper we are mostly interested in the ability to obtain upper bounds for the Z2-cup-length of a 
manifold by considering a suitable vector bundle over the manifold and computing its characteristic rank.
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Theorem 1.2 ([9, Theorem 1.2]). Let X be a connected closed smooth d-manifold and let ξ be a vector bundle 
over X, such that there exists j, j ≤ charrank(ξ), such that every monomial wi1(ξ) . . . wir(ξ) for 0 ≤ it ≤ j

of degree d is zero. Then

cup
Z2

(X) ≤ 1 + d− j − 1
rX

, (1.1)

where rX is the smallest positive integer, such that H̃rX (X; Z2) �= 0.

We will be able to utilize Theorem 1.2 to a great degree in the case of the canonical k-plane bundle γ̃n,k
over the oriented Grassmann manifold G̃n,k of oriented k-dimensional vector subspaces in Rn.

Since we will be considering only cohomology with Z2 coefficients, we will abbreviate Hj(X; Z2) to Hj(X)
and cup

Z2
(X) to cup(X) throughout the paper. Also, because of the diffeomorphism G̃n,k

∼= G̃n,n−k, we 
may assume k ≤ n − k.

For our purposes, the cohomology of the oriented Grassmann manifold G̃n,k is best described through its 
relation to the cohomology of the (unoriented) Grassmann manifold Gn,k of k-dimensional vector subspaces 
in Rn.

The Z2-cohomology ring of the Grassmann manifold Gn,k is (see [1])

H∗(Gn,k) = Z2[w1, w2, . . . , wk]/In,k, (1.2)

where dim(wi) = i and the ideal In,k is generated by k homogeneous polynomials w̄n−k+1, w̄n−k+2, . . . , w̄n, 
where each w̄i denotes the i-dimensional component of the formal power series

1 + (w1 + w2 + · · · + wk) + (w1 + w2 + · · · + wk)2 + (w1 + w2 + · · · + wk)3 + · · · .

Each indeterminate wi is a representative of the ith Stiefel–Whitney class wi(γn,k) of the canonical k-plane 
bundle γn,k over Gn,k.

There is a covering projection p : G̃n,k → Gn,k, which is universal for (n, k) �= (2, 1). To this 2-fold 
covering, there is an associated line bundle ξ over Gn,k, such that w1(ξ) = w1(γn,k), to which we have Gysin 
exact sequence [8, Corollary 12.3]

ψ−→Hj−1(Gn,k)
w1−→Hj(Gn,k)

p∗

−→Hj(G̃n,k)
ψ−→Hj(Gn,k)

w1−→ (1.3)

where Hj−1(Gn,k) 
w1−→Hj(Gn,k) is the homomorphism given by the cup product with the first Stiefel–

Whitney class w1(ξ) = w1(γn,k).
Since the pullback p∗γn,k is isomorphic to γ̃n,k, the ring homomorphism p∗ : H∗(Gn,k) −→ H∗(G̃n,k)

(induced by the covering projection p : G̃n,k → Gn,k) maps each Stiefel–Whitney class wi(γn,k) to wi(γ̃n,k).
Consequently, the image Im(p∗ : Hj(Gn,k) → Hj(G̃n,k)) is a subspace of the Z2-vector space Hj(G̃n,k)

consisting only of cohomology classes, which can be expressed as polynomials in the Stiefel–Whitney charac-
teristic classes of γ̃n,k. We shall call it the characteristic subspace and denote it C(j; n, k). Moreover (see [10]), 
the image Im(p∗) of the ring homomorphism p∗ : H∗(Gn,k) −→ H∗(G̃n,k) is a self-annihilating subspace of 
H∗(G̃n,k) (that is, for any x ∈ C(j; n, k) and y ∈ C(j′; n, k) we have xy = 0 if j+j′ = k(n −k) = dim(G̃n,k)).

This implies that the characteristic rank of γ̃n,k is equal to the greatest integer q, such that the homo-
morphism p∗ : Hj(Gn,k) → Hj(G̃n,k) is surjective (that is Hj(G̃n,k) = C(j; n, k)) for all j, 0 ≤ j ≤ q, or, 
equivalently, that the homomorphism w1 : Hj(Gn,k) −→ Hj+1(Gn,k) is injective for all j, 0 ≤ j ≤ q.

Hence, in order to compute the characteristic rank of γ̃n,k, it is necessary to study the kernel of w1 :
Hj(Gn,k) −→ Hj+1(Gn,k). The following is a brief summary of the approach employed in the work of 
Korbaš and Rusin [7]. Let us denote
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