

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

function spaces endowed with set-open topologies.

We study tightness properties and selective versions of separability in bitopological

Variations of selective separability and tightness in function spaces with set-open topologies $\stackrel{\Rightarrow}{\approx}$

© 2016 Elsevier B.V. All rights reserved.

and its Applications

Alexander V. Osipov^a, Selma Özçağ^{b,*}

^a Ural Federal University, Krasovskii Institute of Mathematics and Mechanics, Ekaterinburg, Russia
^b Department of Mathematics, Hacettepe University, Beytepe, Ankara, Turkey

ABSTRACT

ARTICLE INFO

Article history: Received 25 July 2016 Received in revised form 7 December 2016 Accepted 13 December 2016 Available online 15 December 2016

- MSC: 54C35 54C40 54D65 46E55
- Keywords: Selection principles Bitopology Selective separability Set-open topology C-compactness Submetrizable Fan tightness Strong fan tightness T-tightness R-separability M-separability H-separability

1. Introduction

In this paper we are mainly concerned with selective versions of separability in bitopological function spaces endowed with two homogenous set-open topologies.

* Corresponding author.

 $^{^{\}pm}\,$ This work was supported by Act 211 Government of the Russian Federation, contract 02.A03.21.0006.

E-mail addresses: OAB@list.ru (A.V. Osipov), sozcag@hacettepe.edu.tr (S. Özçağ).

Although the definition of selection principles was given by Scheepers in 1996, the theory is actually based on the papers by Menger, Hurewicz, Rothberger and Sierpiński in 1920–1930, see [11,17,25].

Many topological properties can be defined or characterized in terms of the following two classical selection principles given in a general form in [28] as follows:

Let \mathcal{A} and \mathcal{B} be sets consisting of families of subsets of an infinite set X. Then:

 $S_1(\mathcal{A}, \mathcal{B})$: for each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(b_n : n \in \mathbb{N})$ such that for each $n, b_n \in A_n$, and $\{b_n : n \in \mathbb{N}\}$ is an element of \mathcal{B} .

 $S_{fin}(\mathcal{A}, \mathcal{B})$: for each sequence $(A_n : n \in \mathbb{N})$ of elements of \mathcal{A} there is a sequence $(B_n : n \in \mathbb{N})$ of finite sets such that for each $n, B_n \subseteq A_n$, and $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{B}$.

The selection principles denoted by $S_{fin}(\mathcal{O}, \mathcal{O})$ and $S_1(\mathcal{O}, \mathcal{O})$ are called the Menger and Rothberger property, where \mathcal{O} is the family of open covers of a topological space.

For the topological space X, let \mathcal{D} denote the family of dense subspaces of X. The selection principles $S_{fin}(\mathcal{D}, \mathcal{D})$ and $S_1(\mathcal{D}, \mathcal{D})$ were introduced by Scheepers in [29] and recently gained a great attention, see [3–5, 10].

In [3] the selection properties $S_{fin}(\mathcal{D},\mathcal{D})$, $S_1(\mathcal{D},\mathcal{D})$ and $S_1(\mathcal{D},\mathcal{D}^{gp})$ are called *M*-separability (also called selective separability), *R*-separability and *GN*-separability, respectively, while a modified property $S_{fin}(\mathcal{D},\mathcal{D}^{gp})$ is called *H*-separability where "M-", "R-" and "H-" represent well known Menger, Rothberger and Hurewicz properties.

It should be noted that very recently Tsaban and his co-authors in [6] studied all properties $S(\mathcal{A}, \mathcal{B})$ for $S \in \{S_1, S_{fin}\}$ and \mathcal{A}, \mathcal{B} are combinations of open covers, dense open families and dense sets.

The selection principle theory was first considered in bitopological spaces by Kočinac and Özçağ in [15, 16] and they carried out a systematic study on selection principles mainly selective versions of separability in bitopological spaces, particularly in the space C(X) of all continuous real-valued functions defined on a Tychonoff space X, where C(X) is endowed with the topology τ_p of pointwise topology and the compact-open topology τ_k .

In the present paper we investigate some properties of bitopological selective versions of separability in function spaces and the set-open topologies will be the main tool.

The set-open topology on a family λ of nonempty subsets of a set X is a generalization of the compactopen topology (and of the topology of pointwise convergence). This notion was first introduced by Arens and Dugundji in [1] and was widely investigated by Osipov in [20–22]. In the next section we recall some facts on the set-open topologies.

For background material on selection principles we refer to the survey papers [13,27,30], for undefined notions in function spaces, see [2]. We will follow [8] for topological terminology and notations.

2. Main definitions and notations

In this paper, we consider the space C(X) of all real-valued continuous functions defined on a Tychonoff space X.

Recall that a subset A of a space X is a C-compact subset of X if for any real-valued function f continuous on X, the set f(A) is compact in \mathbb{R} .

A family λ of *C*-compact subsets of *X* is said to be hereditary with respect to *C*-compact subsets if it satisfies the following condition: whenever $A \in \lambda$ and *B* is a *C*-compact (in *X*) subset of *A*, then $B \in \lambda$. Recall that a family λ of nonempty subsets of a topological space (X, τ) is called a π -network for *X* if for any nonempty open set $U \in \tau$, there exists $A \in \lambda$ such that $A \subseteq U$. Download English Version:

https://daneshyari.com/en/article/5778089

Download Persian Version:

https://daneshyari.com/article/5778089

Daneshyari.com