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For each a ∈ ωω, we define a Baire class one function fa : ωω → ωω which encodes 
a in a certain sense. We show that for each Borel g : ωω → ωω, fa ∩ g = ∅
implies a ∈ Δ1

1(c) where c is any code for g. We generalize this theorem for g in a 
larger pointclass Γ. Specifically, when Γ = Δ1

2, a ∈ L[c]. Also for all n ∈ ω, when 
Γ = Δ1

3+n, a ∈ M1+n(c).
© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Definition 1.1. A challenge–response relation (c.r.-relation) is a triple 〈R−, R+, R〉 such that R ⊆ R−×R+. 
The set R− is the set of challenges, and R+ is the set of responses. When cRr, we say that r meets c.

Definition 1.2. A backwards generalized Galois–Tukey connection (morphism) from A = 〈A−, A+, A〉 to 
B = 〈B−, B+, B〉 is a pair 〈φ−, φ+〉 of functions φ− : B− → A− and φ+ : A+ → B+ such that

(∀c ∈ B−)(∀r ∈ A+)φ−(c)Ar ⇒ cB φ+(r).

When there is a morphism from A to B, let us say that A is above B and B is below A.

Definition 1.3. The norm of a c.r.-relation R = 〈R−, R+, R〉 is
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||R|| := min{|S| : S ⊆ R+ and (∀c ∈ R−)(∃r ∈ S) cR r}.

If there is a morphism from A to B, then ||A|| ≥ ||B||. Challenge–response relations and morphisms 
between them were introduced by Vojtas as a way to abstract features of the study of cardinal characteristics
of the continuum. For more on c.r.-relations, see [2] and [6].

Temporarily fix a pointclass Γ. Let FΓ be the set of functions from ωω to ωω in Γ. Let D be the binary 
relation of disjointness of functions from ωω to ωω. That is, given two functions f, g : ωω → ωω, let

fDg :⇔ f ∩ g = ∅ ⇔ (∀x ∈ ωω) f(x) �= g(x).

Let DΓ be the c.r.-relation

DΓ := 〈FΓ,FΓ, D〉.

In this paper we will be interested in the c.r.-relation DΓ for various pointclasses Γ.
For example, we will be interested in computing ||DΔ1

1
||, which is the smallest size of a family of Borel 

functions from ωω to ωω such that each Borel function from ωω to ωω is disjoint from some member of the 
family. We will show that ||DΔ1

1
|| = 2ω by showing that DΔ1

1
is above a c.r.-relation whose norm is 2ω. 

Specifically, we will show that DΔ1
1

is above 〈ωω, ωω, ≤Δ1
1
〉, where a ≤Δ1

1
b iff a ∈ ωω is definable by a Δ1

1
formula using b ∈ ωω as a parameter. To define the φ− part of the morphism, for each a ∈ ωω we will define 
a Baire class one function fa : ωω → ωω (and we will have φ−(a) = fa). The φ+ part of the morphism will 
simply map each function from ωω to ωω in Γ to any code for that function. The fact that 〈φ−, φ+〉 is a 
morphism is the following statement: for each a ∈ ωω and Borel function g : ωω → ωω,

fa ∩ g = ∅ ⇒ a ≤Δ1
1

any code for g.

We will prove that there is a morphism from DΔ1
1

to 〈ωω, ωω, ≤Δ1
1
〉 by proving a general theorem (Theo-

rem 5.3) which provides a sufficient condition for when there exists a morphism from an arbitrary DΓ to an 
arbitrary 〈ωω, ωω, ≺〉, where ≺ is an ordering on ωω. Just like the case with DΔ1

1
, we will use the functions 

fa for the φ− map, and the φ+ map will be “take any code for”. Thus, if the appropriate relationship holds 
between Γ and ≺, then we will have that for each a ∈ ωω and each g : ωω → ωω in Γ,

fa ∩ g = ∅ ⇒ a ≺ any code for g.

We will get that there exists a morphism from DΔ1
2

to 〈ωω, ωω, ≤L〉, where a ≤L b iff a ∈ L[b]. The 
analogous result for larger Γ uses large cardinals. We will have that as long as M1(b) (the canonical inner 
model containing 1 Woodin cardinal and containing b ∈ ωω) exists for all b ∈ ωω, then there is a morphism 
from DΔ1

3
to 〈ωω, ωω, ≤M1〉, where a ≤M1 b iff a ∈ M1(b). Next, as long as M2(b) exists for all b ∈ ωω, 

there is a morphism from DΔ1
4

to 〈ωω, ωω, ≤M2〉. The pattern continues like this through the projective 
hierarchy.

In this paper, we are considering functions from ωω to ωω in a pointclass Γ. We could have instead 
considered functions in Γ from an arbitrary uncountable Polish space X to an arbitrary Polish space Y , 
and our results would not have changed much. The appropriate encoding function f ′′

a : X → Y could be 
defined by first defining f ′

a : ω2 → ωω in a way similar to fa and then using an injection of ω2 into X and a 
surjection of ωω onto Y . We trust that the interested reader can work through the details without trouble.

2. Related results

Before considering DΓ for various Γ, we will consider related c.r.-relations. First, consider the everywhere 
domination ordering of functions from ωω to ω. That is, given f, g : ωω → ω, we write f ≤ g iff



Download English Version:

https://daneshyari.com/en/article/5778112

Download Persian Version:

https://daneshyari.com/article/5778112

Daneshyari.com

https://daneshyari.com/en/article/5778112
https://daneshyari.com/article/5778112
https://daneshyari.com

