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We describe a new quantifier elimination algorithm for real closed fields based 
on Thom encoding and sign determination. The complexity of this algorithm 
is elementary recursive and its proof of correctness is completely algebraic. In 
particular, the notion of connected components of semialgebraic sets is not used.
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1. Introduction

The first proofs of quantifier elimination for real closed fields by Tarski, Seidenberg, Cohen or Hörmander 
[22,21,8,16] were all providing primitive recursive algorithms.

The situation changed with the Cylindrical Algebraic Decomposition method [10] and elementary recur-
sive algorithms where obtained (see also [17,19]). This method produces a set of sampling points meeting 
every connected component defined by a sign condition on a family of polynomials. Cylindrical Algebraic 
Decomposition, being based on repeated projections, is in fact doubly exponential in the number of variables 
(see for example [2, Chapter 11]).
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Single exponential degree bounds, using the critical point method to project in one step a block of 
variables, have been obtained for the existential theory over the reals. The critical point method also gives 
a quantifier elimination algorithm which is doubly exponential in the number of blocks [13–15,20,1,2].

For all these elementary recursive methods, the proofs of correctness of the algorithms are based on 
geometric properties of semialgebraic sets, such as the fact that they have a finite number of connected 
components. They are also valid for general real closed fields, where the notion of semialgebraic connected-
ness has to be used.

Our aim in this paper is to provide an elementary recursive algorithm for quantifier elimination over real 
closed fields (Theorem 1) with the particularity that its proof of correctness is entirely based on algebra 
and does not involve the notion of connected components of semialgebraic sets (see details in Remark 21, 
Remark 25 and Remark 28).

The development of such algebraic proofs is very important in the field of constructive algebra. For 
instance, the elimination of one variable step of the algorithm we present here is, in the special case of 
monic polynomials, a key step in the construction of algebraic identities with elementary recursive degree 
bounds for the Positivstellensatz and Hilbert 17th problem in [18].

Another motivation for the present work is to provide an elementary recursive algorithm for quantifier 
elimination over real closed fields, suitable for being formally checked by a proof assistant such as Coq [7]
using the algebraic nature of its correctness proof. Indeed, because of the algebraic nature of its correctness 
proof, the original proof of Tarski’s quantifier elimination [22], as presented in [2, Chapter 2] has already 
been checked using Coq in [9].

We start with some notation.
Let R be a real closed field. For α ∈ R, its sign is as usual defined as follows:

sign(α) =

⎧⎪⎨
⎪⎩

−1 if α < 0,
0 if α = 0,
1 if α > 0.

Given a family of polynomials F ⊂ R[x1, . . . , xk], a sign condition on F is an element τ of {−1, 0, 1}F . We 
use the notation

sign(F) = τ

to mean

∧
Q∈F

(sign(Q) = τ(Q)) .

The realization of a sign condition τ on F is defined as

Real(τ,R) = {υ ∈ Rk | sign(F(υ)) = τ}.

If Real(τ, R) �= ∅, we say that τ is realizable. Finally, we note by SIGN(F) the set of realizable sign conditions 
on F .

For p ∈ Z, p ≥ 0, we denote by bit(p) the number of binary digits needed to represent p. This is to say

bit(p) =
{

1 if p = 0,
k if p ≥ 1 and 2k−1 ≤ p < 2k with k ∈ Z.
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