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The principle ADS asserts that every linear order on ω has an infinite ascending or 
descending sequence. This has been studied extensively in the reverse mathematics 
literature, beginning with the work of Hirschfeldt and Shore [16]. We introduce the 
principle ADC, which asserts that every such linear order has an infinite ascending 
or descending chain. The two are easily seen to be equivalent over the base system 
RCA0 of second order arithmetic; they are even computably equivalent. However, we 
prove that ADC is strictly weaker than ADS under Weihrauch (uniform) reducibility. 
In fact, we show that even the principle SADS, which is the restriction of ADS to 
linear orders of type ω+ω∗, is not Weihrauch reducible to ADC. In this connection, 
we define a more natural stable form of ADS that we call General-SADS, which is 
the restriction of ADS to linear orders of type k + ω, ω + ω∗, or ω + k, where k is a 
finite number. We define General-SADC analogously. We prove that General-SADC
is not Weihrauch reducible to SADS, and so in particular, each of SADS and SADC
is strictly weaker under Weihrauch reducibility than its general version. Finally, 
we turn to the principle CAC, which asserts that every partial order on ω has an 
infinite chain or antichain. This has two previously studied stable variants, SCAC and 
WSCAC, which were introduced by Hirschfeldt and Jockusch [16], and by Jockusch, 
Kastermans, Lempp, Lerman, and Solomon [19], respectively, and which are known 
to be equivalent over RCA0. Here, we show that SCAC is strictly weaker than WSCAC
under even computable reducibility.

© 2016 Published by Elsevier B.V.

1. Introduction

In the quest to understand the logic strength of Ramsey’s theorem for pairs, initiated by Jockusch [18], 
a myriad of related combinatorial principles were introduced and studied in their own right, giving rise to 
what is now called the reverse mathematics zoo [1]. Two early examples, introduced by Hirschfeldt and Shore 
[16], were the ascending/descending sequence principle (ADS) and the chain/antichain principle (CAC). ADS

✩ Dzhafarov was partially supported by NSF grant DMS-1400267. The authors are grateful to the anonymous referee for a number 
of corrections and helpful comments.
* Corresponding author.

E-mail addresses: eric.astor@uconn.edu (E.P. Astor), damir@math.uconn.edu (D.D. Dzhafarov), david.solomon@uconn.edu
(R. Solomon), jacob.suggs@uconn.edu (J. Suggs).

http://dx.doi.org/10.1016/j.apal.2016.11.010
0168-0072/© 2016 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.apal.2016.11.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/apal
mailto:eric.astor@uconn.edu
mailto:damir@math.uconn.edu
mailto:david.solomon@uconn.edu
mailto:jacob.suggs@uconn.edu
http://dx.doi.org/10.1016/j.apal.2016.11.010


JID:APAL AID:2558 /FLA [m3L; v1.192; Prn:6/12/2016; 12:51] P.2 (1-19)
2 E.P. Astor et al. / Annals of Pure and Applied Logic ••• (••••) •••–•••

asserts that every linear order (on ω) has an infinite ascending or descending sequence, while CAC asserts 
that every partial order (on ω) has an infinite chain or antichain. (See Section 2 for formal definitions.) 
While these principles have thus far been analyzed from the point of view of reverse mathematics, in this 
article we study them using the more nuanced framework of Weihrauch reducibility, which we describe 
below. We refer the reader to Soare [24] and Simpson [23] for general background on computability and 
reverse mathematics, respectively, and to Hirschfeldt [15, Sections 6 and 9] for a comprehensive survey of 
reverse mathematical results about Ramsey’s theorem and other combinatorial problems.

As is well-known, there is a natural interplay between computability theory and reverse mathematics, 
with each of the benchmark subsystems of second-order arithmetic broadly corresponding to a particular 
level of computability-theoretic complexity (see, e.g., [16, Section 1] for details). In fact, this connection is 
deeper. The majority of principles one considers in reverse mathematics, like Ramsey’s theorem, have the 
syntactic form

∀X (Φ(X) → ∃Y Ψ(X,Y )),

where Φ and Ψ are arithmetical predicates. It is common to call such a principle a problem, and to call 
each X such that Φ(X) holds an instance of this problem, and each Y such that Ψ(X, Y ) holds a solution
to X. The instances of RTn

k are thus the colorings c : [ω]n → k, and the solutions to any such c are the 
infinite homogeneous sets for this coloring. Over RCA0, an implication between problems (say Q → P) can 
in principle make multiple applications of the antecedent (Q), or split into cases in a non-uniform way; 
however, in practice, most implications have a simpler shape. To discuss these, we use the following notions 
of reduction between problems:

Definition 1.1. Let P and Q be problems.

(1) P is computably reducible to Q, written P ≤c Q, if every instance X of P computes an instance X̂ of Q, 
such that if Ŷ is any solution to X̂ then there is a solution Y to X computable from X ⊕ Ŷ .

(2) P is strongly computably reducible to Q, written P ≤sc Q, if every instance X of P computes an instance 
X̂ of Q, such that if Ŷ is any solution to X̂ then there is a solution Y to X computable from Ŷ .

(3) P is Weihrauch reducible to Q, written P ≤W Q, if there are Turing functionals Φ and Δ such that if 
X is any instance of P then ΦX is an instance of Q, and if Ŷ is any solution to ΦX then ΔX⊕Ŷ is a 
solution to X.

(4) P is strongly Weihrauch reducible to Q, written P ≤sW Q, if there are Turing functionals Φ and Δ such 
that if X is any instance of P then ΦX is an instance of Q, and if Ŷ is any solution to ΦX then ΔŶ is 
a solution to X.

All of these reductions express the idea of taking a problem, P, and computably (even uniformly com-
putably, in the case of ≤W and ≤sW) transforming it into another problem, Q, in such a way that being able 
to solve the latter computably (uniformly computably) tells us how to solve the former. This is a natural 
idea, and indeed, more often than not an implication Q → P over RCA0 (or at least, over ω-models of RCA0) 
is a formalization of some such reduction. The strong versions above may appear more contrived, since it 
does not seem reasonable to deliberately bar access to the instance of the problem one is working with. Yet 
commonly, in a reduction of the above sort, the “backward” computation from Ŷ to Y turns out not to 
reference the original instance. Frequently, it is just the identity.

Let P ≤ω Q denote that every ω-model of RCA0 + Q is a model of P. It is easy to see that the following 
implications hold:
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