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In two previous papers [33,37], we exposed a combinatorial approach to the program 
of Geometry of Interaction, a program initiated by Jean-Yves Girard [16]. The 
strength of our approach lies in the fact that we interpret proofs by simpler 
structures – graphs – than Girard’s constructions, while generalising the latter since 
they can be recovered as special cases of our setting. This third paper extends this 
approach by considering a generalisation of graphs named graphings, which is in 
some way a geometric realisation of a graph on a measured space. This very general 
framework leads to a number of new models of multiplicative-additive linear logic 
which generalise Girard’s geometry of interaction models and opens several new 
lines of research. As an example, we exhibit a family of such models which account 
for second-order quantification without suffering the same limitations as Girard’s 
models.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Context

Geometry of interaction. This research program was introduced by Girard [13,16] after his discovery of linear 
logic [12]. In a first approximation, it aims at defining a semantics of proofs that accounts for the dynamics 
of cut-elimination. Namely, the geometry of interaction models differ from usual (denotational) semantics 
in that the interpretation of a proof π and its normal form ρ are not equal, but one has a way of computing 
the interpretation of the normal form ρ from the interpretation of the proof π (illustrated in Fig. 1). As a 
consequence, a geometry of interaction models not only proofs – programs – but also their normalization 
– their execution. This semantical counterpart to the cut-elimination procedure was called the execution 
formula by Girard in his first papers about geometry of interaction [15,14,17], and it is a way of computing 
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Fig. 1. Denotational semantics vs geometry of interaction.

the solution to the so-called feedback equation. This equation turned out to have a more general solution 
[18], which lead Girard to the definition of a geometry of interaction in the hyperfinite factor [19].

Geometry of Interaction, however, is not only about the interpretation of proofs and their dynamics, 
but also about reconstructing logic around this semantical counterpart to the cut-elimination procedure. 
This means that logic arises from the dynamics and interactions of proofs – programs –, as a syntactical 
description of the possible behaviours of proofs – programs. This aspect of the geometry of interaction 
program has been less studied than the proof interpretation part.

We must also point out that geometry of interaction has been successful in providing tools for the study 
of computational complexity. The fact that it models the execution of programs explains that it is well 
suited for the study of complexity classes in time [5,27], as well as in space [4,3]. It was also used to explain 
[23] Lamping’s optimal reduction of lambda-calculus [28].

Interaction graphs. They were first introduced [33] to define a combinatorial approach to Girard’s geometry 
of interaction in the hyperfinite factor [19]. The main idea was that the execution formula – the counterpart 
of the cut-elimination procedure – can be computed as the set of alternating paths between graphs, and 
that the measurement of interaction defined by Girard using the Fuglede–Kadison determinant [11] can be 
computed as a measurement of a set of cycles.

The setting was then extended to deal with additive connectives [37], showing by the way that the 
constructions were a combinatorial approach not only to Girard’s hyperfinite GoI construction but also to 
all the earlier constructions [13,15,14,17]. This result could be obtained by unveiling a single geometrical 
property, which we called the trefoil property, upon which all the constructions of geometry of interaction 
introduced by Girard are founded. This property, which can be understood as a sort of associativity, suggests 
that computation – as modelled by geometry of interaction – is closely related to algebraic topology.

This paper takes another direction though: based on ideas that appeared in the author’s PhD thesis 
[34], it extends the setting of graphs by considering a generalisation of graphs named graphings, which is 
in some way a geometric realisation of a graph. This very general framework leads to a number of new 
models of multiplicative-additive linear logic which generalise Girard’s geometry of interaction models and 
opens several new lines of research. As an example, we exhibit a family of such models which account for 
second-order quantification without suffering the same limitations as Girard’s models.

1.2. Outline

We introduce in this paper a family of models which generalises and axiomatizes the notion a GoI 
model. This systematic approach is obtained by extending previous work [33,37]. While these previous 
constructions built models in which the objects under study were directed weighted graphs, we here consider 
a measure-theoretic generalisation of such graphs named graphings. The resulting construction yields a very 
rich hierarchy of models parametrized by two monoids: the weight monoid and the so-called microcosm.

A weight monoid is nothing more than a monoid which elements will be used to give weights to edges of 
the graphs. A microcosm, on the other hand, is a monoid of measurable maps, i.e. it is a subset of M (X), the 
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