ARTICLE IN PRESS

Annals of Pure and Applied Logic $\bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet \bullet - \bullet \bullet \bullet$

APAL:2566

Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

Proof lengths for instances of the Paris–Harrington principle

Anton Freund

Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom

ARTICLE INFO	A B S T R A C T
Article history: Received 17 December 2015 Received in revised form 4 October 2016 Accepted 3 January 2017 Available online xxxx	As Paris and Harrington have famously shown, Peano Arithmetic does not prove that for all numbers k, m, n there is an N which satisfies the statement $\operatorname{PH}(k, m, n, N)$: For any k-coloring of its n-element subsets the set $\{0, \ldots, N-1\}$ has a large homogeneous subset of size $\geq m$. At the same time very weak theories can establish the Σ_1 -statement $\exists_N \operatorname{PH}(\overline{k}, \overline{m}, \overline{n}, N)$ for any fixed parameters k, m, n . Which theory, then, does it take to formalize natural proofs of these instances? It is known that $\forall_m \exists_N \operatorname{PH}(\overline{k}, m, \overline{n}, N)$ has a natural and short proof (relative to n and k) by Σ_{n-1} -induction. In contrast, we show that there is an elementary function e such that any proof of $\exists_N \operatorname{PH}(\overline{e(n)}, \overline{n+1}, \overline{n}, N)$ by Σ_{n-2} -induction is ridiculously long. In order to establish this result on proof lengths we give a computational analysis of slow provability, a notion introduced by Sy-David Friedman, Rathjen and Weiermann. We will see that slow uniform Σ_1 -reflection is related to a function that has a considerably lower growth rate than F_{ε_0} but dominates all functions F_{α} with $\alpha < \varepsilon_0$ in the fast-growing hierarchy. @ 2017 Elsevier B.V. All rights reserved.
MSC: 03F30 03F20 03D20 03F40	
Keywords: Peano Arithmetic Proof length Paris-Harrington principle Finite Ramsey theorem Slow consistency Fast growing hierarchy	

We recall some terminology from [17]: For a set X and a natural number n we write $[X]^n$ for the collection of subsets of X with precisely n elements. Given a function f with domain $[X]^n$, a subset Y of X is called homogeneous for f if the restriction of f to the set $[Y]^n$ is constant. A non-empty subset of N is called large if its cardinality is at least as big as its minimal element. Where the context suggests it we use N to denote the set $\{0, \ldots, N-1\}$. Then the Paris–Harrington Principle, or Strengthened Finite Ramsey Theorem, expresses that for all natural numbers k, m, n there is an N such that the following statement holds:

 $\operatorname{PH}(k,m,n,N) := \begin{array}{l} \text{"for any function } [N]^n \to k \text{ the set } N \text{ has a large} \\ \text{homogeneous subset with at least } m \text{ elements"} \end{array}$

Using the methods presented in [8, Section I.1(b)] it is easy to formalize the statement PH(k, m, n, N) in the language of first order arithmetic, as a formula that is Δ_1 in the theory $\mathbf{I}\Sigma_1$ of Σ_1 -induction. The celebrated result of [17] says that the formula $\forall_{k,m,n} \exists_N PH(k, m, n, N)$ is true but unprovable in Peano Arithmetic.

Please cite this article in press as: A. Freund, Proof lengths for instances of the Paris–Harrington principle, Ann. Pure Appl. Logic (2017), http://dx.doi.org/10.1016/j.apal.2017.01.004

E-mail address: A.J.Freund14@leeds.ac.uk.

 $[\]label{eq:http://dx.doi.org/10.1016/j.apal.2017.01.004 0168-0072/© 2017 Elsevier B.V. All rights reserved.$

$\mathbf{2}$

ARTICLE IN PRESS

A. Freund / Annals of Pure and Applied Logic • • • (• • • •) • • • - • • •

As is well-known, any true Σ_1 -formula in the language of first-order arithmetic can be proved in a theory as weak as Robinson Arithmetic. It is thus pointless to ask whether a Σ_1 -sentence is provable in a sound arithmetical theory, in contrast to the situation for Π_1 -sentences (cf. Gödel's Theorems) and Π_2 -sentences (provably total functions). What we can sensibly ask is whether a Σ_1 -sentence has a proof with some additional property. The present paper explores this question for instances $\exists_N PH(\overline{k}, \overline{m}, \overline{n}, N)$ of the Paris–Harrington Principle. Our principal result states that, for some elementary function e, the following holds:

> For sufficiently large n, no proof of the formula $\exists_N \operatorname{PH}(\overline{e(n)}, \overline{n+1}, \overline{n}, N)$ in the theory $\mathbf{I}\Sigma_{n-2}$ can have Gödel number smaller than $F_{\varepsilon_0}(n-3)$. (1)

If we replace $\mathbf{I}\Sigma_{n-2}$ by $\mathbf{I}\Sigma_{n-3}$ (and $F_{\varepsilon_0}(n-3)$ by $F_{\varepsilon_0}(n-4)$) then we can take the constant function e(n) = 8. It is open whether we can make e constant and keep the stronger fragment $\mathbf{I}\Sigma_{n-2}$.

Recall that F_{ε_0} is the function at stage ε_0 of the fast-growing hierarchy. Ketonen and Solovay in [11] have related it to the function that maps (k, m, n) to the smallest witness N which makes the statement $PH(\overline{k}, \overline{m}, \overline{n}, \overline{N})$ true. A classical result due to Kreisel, Wainer and Schwichtenberg [13,19,24] says that F_{ε_0} eventually dominates any provably total function of Peano Arithmetic. Similar to (1) we will show that the Σ_1 -formula $\exists_y F_{\varepsilon_0}(\overline{n}) = y$ has no short proof in the theory $I\Sigma_n$.

By [8, Theorem II.1.9] the formula $\forall_m \exists_N \operatorname{PH}(\overline{k}, m, \overline{n}, N)$ is provable in $\mathbf{I}\Sigma_{n-1}$, for each fixed $n \geq 2$ and k. The proofs of these instances formalize perfectly natural mathematical arguments. According to [8, Section II.2(c)] they can be constructed in the meta-theory $\mathbf{I}\Sigma_1$. Since all provably total functions of $\mathbf{I}\Sigma_1$ are primitive recursive, this complements (1) by the following statement:

There is a primitive recursive function which maps
$$(k, n)$$
 with $n \ge 2$ to
a proof of the formula $\forall_m \exists_N \operatorname{PH}(\overline{k}, m, \overline{n}, N)$ in the theory $\mathbf{I}\Sigma_{n-1}$. (2)

Similarly, a primitive recursive construction yields proofs of $\exists_y F_{\varepsilon_0}(\overline{n}) = y$ in the theories $\mathbf{I}\Sigma_{n+1}$: In view of $F_{\varepsilon_0}(x) \simeq F_{\omega_{x+1}}(x) = F_{\omega_x^{x+1}}(x)$ it suffices to prove the statements " $F_{\omega_n^{n+1}}$ is total". This is done by Π_2 -induction up to ω_n^{n+1} , which is available in $\mathbf{I}\Sigma_{n+1}$ by Gentzen's classical construction (cf. [4, Theorem 4.11]).

We argue that (1) is not only a result about proof length, but also about the existence of natural proofs: Observe first that we are concerned with sequences p_n of proofs for a sequence of parametrized statements A_n , rather than with a single proof of a single statement. Under which conditions can such a sequence of proofs follow an intelligible uniform proof idea? It is the role of the proofs p_n to guarantee that the formulas A_n are true. On the other hand the statement "the given proof idea leads to formally correct proofs p_n of the statements A_n " should, we believe, be justified by fairly elementary means. Since elementary means cannot prove the totality of functions with a high growth rate this implies that the function mapping n to (a code of) the proof p_n cannot grow too fast. In this sense (1) shows that $\mathbf{I}\Sigma_{n-2}$ -proofs of the Paris–Harrington Principle for arity n and e(n) colors cannot follow a natural proof idea. The author sees no formal condition which would, on the positive side, ensure that a sequence of proofs is natural. On an informal level the construction which establishes [8, Theorem II.1.9] appears to provide natural $\mathbf{I}\Sigma_{n-1}$ -proofs of the statements $\forall_m \exists_N \mathrm{PH}(\overline{k}, m, \overline{n}, N)$.

Let us briefly discuss connections with a line of research initiated by Harvey Friedman: Theorem 15 in [21] says that any proof of a certain Σ_1^0 -statement in the theory Π_2^1 -BI₀ must have at least 2_{1000} (i.e. 1000 iterated exponentials to the base 2) symbols. Obviously this goes much further than our result insofar as it involves a much stronger theory. However, there is also a more conceptual difference: Friedman's statement can, in principle, be verified explicitly (by looking at all possible proofs with less than 2_{1000} symbols) and is thus finitistically meaningful. In contrast, our statement (1) involves an unbounded existential quantifier, implicit in the phrase "sufficiently large". It is conceivable that any witness to this existential quantifier is

Download English Version:

https://daneshyari.com/en/article/5778181

Download Persian Version:

https://daneshyari.com/article/5778181

Daneshyari.com