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As Paris and Harrington have famously shown, Peano Arithmetic does not 
prove that for all numbers k, m, n there is an N which satisfies the statement 
PH(k, m, n, N): For any k-coloring of its n-element subsets the set {0, . . . , N − 1}
has a large homogeneous subset of size ≥ m. At the same time very weak theories 
can establish the Σ1-statement ∃N PH(k, m, n, N) for any fixed parameters k, m, n. 
Which theory, then, does it take to formalize natural proofs of these instances? It is 
known that ∀m∃N PH(k, m, n, N) has a natural and short proof (relative to n and k) 
by Σn−1-induction. In contrast, we show that there is an elementary function e such 
that any proof of ∃N PH(e(n), n + 1, n, N) by Σn−2-induction is ridiculously long.
In order to establish this result on proof lengths we give a computational analysis 
of slow provability, a notion introduced by Sy-David Friedman, Rathjen and 
Weiermann. We will see that slow uniform Σ1-reflection is related to a function 
that has a considerably lower growth rate than Fε0 but dominates all functions Fα

with α < ε0 in the fast-growing hierarchy.
© 2017 Elsevier B.V. All rights reserved.

We recall some terminology from [17]: For a set X and a natural number n we write [X]n for the collection 
of subsets of X with precisely n elements. Given a function f with domain [X]n, a subset Y of X is called 
homogeneous for f if the restriction of f to the set [Y ]n is constant. A non-empty subset of N is called large 
if its cardinality is at least as big as its minimal element. Where the context suggests it we use N to denote 
the set {0, . . . , N − 1}. Then the Paris–Harrington Principle, or Strengthened Finite Ramsey Theorem, 
expresses that for all natural numbers k, m, n there is an N such that the following statement holds:

PH(k,m, n,N) :≡ “for any function [N ]n → k the set N has a large 
homogeneous subset with at least m elements”

Using the methods presented in [8, Section I.1(b)] it is easy to formalize the statement PH(k, m, n, N) in the 
language of first order arithmetic, as a formula that is Δ1 in the theory IΣ1 of Σ1-induction. The celebrated 
result of [17] says that the formula ∀k,m,n∃N PH(k, m, n, N) is true but unprovable in Peano Arithmetic.
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As is well-known, any true Σ1-formula in the language of first-order arithmetic can be proved in a 
theory as weak as Robinson Arithmetic. It is thus pointless to ask whether a Σ1-sentence is provable 
in a sound arithmetical theory, in contrast to the situation for Π1-sentences (cf. Gödel’s Theorems) and 
Π2-sentences (provably total functions). What we can sensibly ask is whether a Σ1-sentence has a proof with 
some additional property. The present paper explores this question for instances ∃N PH(k, m, n, N) of the 
Paris–Harrington Principle. Our principal result states that, for some elementary function e, the following 
holds:

For sufficiently large n, no proof of the formula ∃N PH(e(n), n + 1, n, N)
in the theory IΣn−2 can have Gödel number smaller than Fε0(n − 3).

(1)

If we replace IΣn−2 by IΣn−3 (and Fε0(n − 3) by Fε0(n − 4)) then we can take the constant function 
e(n) = 8. It is open whether we can make e constant and keep the stronger fragment IΣn−2.

Recall that Fε0 is the function at stage ε0 of the fast-growing hierarchy. Ketonen and Solovay in [11]
have related it to the function that maps (k, m, n) to the smallest witness N which makes the statement 
PH(k, m, n, N) true. A classical result due to Kreisel, Wainer and Schwichtenberg [13,19,24] says that Fε0

eventually dominates any provably total function of Peano Arithmetic. Similar to (1) we will show that the 
Σ1-formula ∃y Fε0(n) = y has no short proof in the theory IΣn.

By [8, Theorem II.1.9] the formula ∀m∃N PH(k, m, n, N) is provable in IΣn−1, for each fixed n ≥ 2
and k. The proofs of these instances formalize perfectly natural mathematical arguments. According to [8, 
Section II.2(c)] they can be constructed in the meta-theory IΣ1. Since all provably total functions of IΣ1
are primitive recursive, this complements (1) by the following statement:

There is a primitive recursive function which maps (k, n) with n ≥ 2 to 
a proof of the formula ∀m∃N PH(k, m, n, N) in the theory IΣn−1.

(2)

Similarly, a primitive recursive construction yields proofs of ∃y Fε0(n) = y in the theories IΣn+1: In view 
of Fε0(x) � Fωx+1(x) = Fωx+1

x
(x) it suffices to prove the statements “Fωn+1

n
is total”. This is done by 

Π2-induction up to ωn+1
n , which is available in IΣn+1 by Gentzen’s classical construction (cf. [4, Theorem 

4.11]).
We argue that (1) is not only a result about proof length, but also about the existence of natural 

proofs: Observe first that we are concerned with sequences pn of proofs for a sequence of parametrized 
statements An, rather than with a single proof of a single statement. Under which conditions can such a 
sequence of proofs follow an intelligible uniform proof idea? It is the role of the proofs pn to guarantee that 
the formulas An are true. On the other hand the statement “the given proof idea leads to formally correct 
proofs pn of the statements An” should, we believe, be justified by fairly elementary means. Since elementary 
means cannot prove the totality of functions with a high growth rate this implies that the function mapping 
n to (a code of) the proof pn cannot grow too fast. In this sense (1) shows that IΣn−2-proofs of the 
Paris–Harrington Principle for arity n and e(n) colors cannot follow a natural proof idea. The author sees 
no formal condition which would, on the positive side, ensure that a sequence of proofs is natural. On an 
informal level the construction which establishes [8, Theorem II.1.9] appears to provide natural IΣn−1-proofs 
of the statements ∀m∃N PH(k, m, n, N).

Let us briefly discuss connections with a line of research initiated by Harvey Friedman: Theorem 15 in 
[21] says that any proof of a certain Σ0

1-statement in the theory Π1
2-BI0 must have at least 21000 (i.e. 1000

iterated exponentials to the base 2) symbols. Obviously this goes much further than our result insofar as it 
involves a much stronger theory. However, there is also a more conceptual difference: Friedman’s statement 
can, in principle, be verified explicitly (by looking at all possible proofs with less than 21000 symbols) and 
is thus finitistically meaningful. In contrast, our statement (1) involves an unbounded existential quantifier, 
implicit in the phrase “sufficiently large”. It is conceivable that any witness to this existential quantifier is 
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