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A set A is coarsely computable with density r ∈ [0, 1] if there is an algorithm for 
deciding membership in A which always gives a (possibly incorrect) answer, and 
which gives a correct answer with density at least r. To any Turing degree a we can 
assign a value ΓT (a): the minimum, over all sets A in a, of the highest density at 
which A is coarsely computable. The closer ΓT (a) is to 1, the closer a is to being 
computable. Andrews, Cai, Diamondstone, Jockusch, and Lempp noted that ΓT can 
take on the values 0, 1/2, and 1, but not any values in strictly between 1/2 and 1. 
They asked whether the value of ΓT can be strictly between 0 and 1/2. This is the 
Gamma question.
Replacing Turing degrees by many-one degrees, we get an analogous question, and 
the same arguments show that Γm can take on the values 0, 1/2, and 1, but not 
any values strictly between 1/2 and 1. We will show that for any r ∈ [0, 1/2], there 
is an m-degree a with Γm(a) = r. Thus the range of Γm is [0, 1/2] ∪ {1}.
Benoit Monin has recently announced a solution to the Gamma question for Turing 
degrees. Interestingly, his solution gives the opposite answer: the only possible values 
of ΓT are 0, 1/2, and 1.

© 2017 Published by Elsevier B.V.

1. Introduction

We give a solution to the Gamma question for many-one degrees by showing that for each r ∈ [0, 1/2], 
there is a many-one degree a such that Γm(a) = r.

A set A ⊆ ω is coarsely computable if, roughly speaking, we have an algorithm for deciding membership 
in A which always gives an answer, and the answer is correct except on a set of density zero. By density, 
we mean asymptotic lower density.
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Definition 1. The lower density of a set Z ⊆ ω is

ρ(Z) := lim inf
n→∞

|Z ∩ [0, n)|
n

.

More generally, we can talk about algorithms which are correct half the time, or a third of the time, or 
almost never. To a set A ⊆ ω, we can assign a real number which measures the highest density to which it 
can be approximated by a computable set.

Definition 2 ([4]). A set A ⊆ ω is coarsely computable at density r ∈ [0, 1] if there is a computable set R
such that ρ(A ↔ R) = r. Here, A ↔ R is the set on which A and R agree:

A ↔ R := {x | x ∈ A ⇐⇒ x ∈ R}.

Definition 3 ([4]). The coarse computability bound of a set A ⊆ ω is

γ(A) := sup{r | A is coarsely computable at density r}.

That is, γ(A) is the supremum, over all computable sets R, of ρ(A ↔ R).

It is known that for each r ∈ (0, 1], there are sets with coarse computability bound r such that the 
supremum is obtained, and sets where the supremum is not obtained [4].

Jockusch and Schupp [7] have shown that every non-zero Turing degree contains a set which is not coarsely 
computable. (This follows from the proof of Proposition 6 below.) Thus, if ΓT (a) = 1, then a = 0. Andrews, 
Cai, Diamondstone, Jockusch, and Lempp suggested assigning to each Turing degree a real number which 
measures the extent to which all sets computable in that degree can be coarsely computed.

Definition 4 ([1]). The coarse computability bound of a Turing degree a is

ΓT (a) := inf{γ(A) | A is a-computable}.

It suffices to take the infimum only over sets in a.

Andrews, Cai, Diamondstone, Jockusch, and Lempp showed that ΓT (a) can take on the values 0, 1/2, 
and 1.1

Theorem 5 ([1]). For a Turing degree a:

(1) If a is computable, ΓT (a) = 1.
(2) If a is computably traceable and non-computable, ΓT (a) = 1/2.
(3) If a is 1-random and hyperimmune-free, ΓT (a) = 1/2.
(4) If a is hyperimmune, ΓT (a) = 0.
(5) If a is PA, ΓT (a) = 0.

Hirschfeldt, Jockusch, McNicholl, and Schupp showed that ΓT (a) cannot take on any values in the open 
interval (1/2, 1). We will repeat the proof here because we will reference it later.

Proposition 6 ([4]). Let a be a nonzero Turing degree. Then ΓT (a) ≤ 1
2 .

1 See also [8] for a unifying approach to some of these examples.
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