Annals of Pure and Applied Logic $\bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet - \bullet \bullet \bullet$

Contents lists available at ScienceDirect

Annals of Pure and Applied Logic

www.elsevier.com/locate/apal

The Gamma question for many-one degrees

Matthew Harrison-Trainor

Group in Logic and the Methodology of Science, University of California, Berkeley, USA

ARTICLE INFO

Article history: Received 9 September 2016 Received in revised form 9 December 2016 Accepted 18 January 2017 Available online xxxx

MSC: 03D32 68Q30 03D30

03D80

Keywords: Computability theory

Coarse computability Gamma question ABSTRACT

A set A is coarsely computable with density $r \in [0,1]$ if there is an algorithm for deciding membership in A which always gives a (possibly incorrect) answer, and which gives a correct answer with density at least r. To any Turing degree \mathbf{a} we can assign a value $\Gamma_T(\mathbf{a})$: the minimum, over all sets A in \mathbf{a} , of the highest density at which A is coarsely computable. The closer $\Gamma_T(\mathbf{a})$ is to 1, the closer \mathbf{a} is to being computable. Andrews, Cai, Diamondstone, Jockusch, and Lempp noted that Γ_T can take on the values 0, 1/2, and 1, but not any values in strictly between 1/2 and 1. They asked whether the value of Γ_T can be strictly between 0 and 1/2. This is the Gamma question.

Replacing Turing degrees by many-one degrees, we get an analogous question, and the same arguments show that Γ_m can take on the values 0, 1/2, and 1, but not any values strictly between 1/2 and 1. We will show that for any $r \in [0, 1/2]$, there is an m-degree \mathbf{a} with $\Gamma_m(\mathbf{a}) = r$. Thus the range of Γ_m is $[0, 1/2] \cup \{1\}$.

Benoit Monin has recently announced a solution to the Gamma question for Turing degrees. Interestingly, his solution gives the opposite answer: the only possible values of Γ_T are 0, 1/2, and 1.

© 2017 Published by Elsevier B.V.

1. Introduction

We give a solution to the Gamma question for many-one degrees by showing that for each $r \in [0, 1/2]$, there is a many-one degree **a** such that $\Gamma_m(\mathbf{a}) = r$.

A set $A \subseteq \omega$ is coarsely computable if, roughly speaking, we have an algorithm for deciding membership in A which always gives an answer, and the answer is correct except on a set of density zero. By density, we mean asymptotic lower density.

 $\hbox{\it E-mail address:} \ {\bf matthew.h-t@berkeley.edu.}$

URL: http://www.math.berkeley.edu/~mattht.

http://dx.doi.org/10.1016/j.apal.2017.01.006 0168-0072 \bigcirc 2017 Published by Elsevier B.V.

^{*} The author was partially supported by NSERC PGSD3-454386-2014. The author would like to thank Antonio Montalbán, James Walsh, Carl Jockusch, and André Nies for their helpful comments.

M. Harrison-Trainor / Annals of Pure and Applied Logic • • • (• • • •) • • • - • •

Definition 1. The lower density of a set $Z \subseteq \omega$ is

$$\underline{\rho}(Z) := \liminf_{n \to \infty} \frac{|Z \cap [0,n)|}{n}.$$

More generally, we can talk about algorithms which are correct half the time, or a third of the time, or almost never. To a set $A \subseteq \omega$, we can assign a real number which measures the highest density to which it can be approximated by a computable set.

Definition 2 ([4]). A set $A \subseteq \omega$ is coarsely computable at density $r \in [0,1]$ if there is a computable set R such that $\rho(A \leftrightarrow R) = r$. Here, $A \leftrightarrow R$ is the set on which A and R agree:

$$A \leftrightarrow R := \{x \mid x \in A \Longleftrightarrow x \in R\}.$$

Definition 3 ([4]). The coarse computability bound of a set $A \subseteq \omega$ is

$$\gamma(A) := \sup\{r \mid A \text{ is coarsely computable at density } r\}.$$

That is, $\gamma(A)$ is the supremum, over all computable sets R, of $\rho(A \leftrightarrow R)$.

It is known that for each $r \in (0,1]$, there are sets with coarse computability bound r such that the supremum is obtained, and sets where the supremum is not obtained [4].

Jockusch and Schupp [7] have shown that every non-zero Turing degree contains a set which is not coarsely computable. (This follows from the proof of Proposition 6 below.) Thus, if $\Gamma_T(\mathbf{a}) = 1$, then $\mathbf{a} = \mathbf{0}$. Andrews, Cai, Diamondstone, Jockusch, and Lempp suggested assigning to each Turing degree a real number which measures the extent to which all sets computable in that degree can be coarsely computed.

Definition 4 (1). The coarse computability bound of a Turing degree **a** is

$$\Gamma_T(\mathbf{a}) := \inf \{ \gamma(A) \mid A \text{ is } \mathbf{a}\text{-computable} \}.$$

It suffices to take the infimum only over sets in **a**.

Andrews, Cai, Diamondstone, Jockusch, and Lempp showed that $\Gamma_T(\mathbf{a})$ can take on the values 0, 1/2, and 1.

Theorem 5 ([1]). For a Turing degree **a**:

- (1) If **a** is computable, $\Gamma_T(\mathbf{a}) = 1$.
- (2) If **a** is computably traceable and non-computable, $\Gamma_T(\mathbf{a}) = 1/2$.
- (3) If **a** is 1-random and hyperimmune-free, $\Gamma_T(\mathbf{a}) = 1/2$.
- (4) If **a** is hyperimmune, $\Gamma_T(\mathbf{a}) = 0$.
- (5) If \mathbf{a} is PA, $\Gamma_T(\mathbf{a}) = 0$.

Hirschfeldt, Jockusch, McNicholl, and Schupp showed that $\Gamma_T(\mathbf{a})$ cannot take on any values in the open interval (1/2, 1). We will repeat the proof here because we will reference it later.

Proposition 6 ([4]). Let **a** be a nonzero Turing degree. Then $\Gamma_T(\mathbf{a}) \leq \frac{1}{2}$.

Please cite this article in press as: M. Harrison-Trainor, The Gamma question for many-one degrees, Ann. Pure Appl. Logic (2017), http://dx.doi.org/10.1016/j.apal.2017.01.006

¹ See also [8] for a unifying approach to some of these examples.

Download English Version:

https://daneshyari.com/en/article/5778183

Download Persian Version:

https://daneshyari.com/article/5778183

<u>Daneshyari.com</u>