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The expert system shell MECore provides a series of knowledge management 
operations to define probabilistic knowledge bases and to reason under uncertainty. 
To provide a reference work for MECore algorithmics, we bring together results 
from different sources that have been applied in MECore and explain their 
intuitive ideas. Additionally, we report on our ongoing work regarding further 
development of MECore’s algorithms to compute optimum entropy distributions 
and provide some empirical results. Altogether this paper explains the intuition of 
important theoretical results and their practical implications, compares old and new 
algorithmic approaches and points out their benefits as well as possible limitations 
and pitfalls.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

When designing expert systems, classical logics fail to meet the demands of reality, as they cannot 
deal with uncertain information. Probabilistic logics [33,2,36] provide a natural extension to deal with 
uncertainty. Numerous approaches have been developed to deal with the accompanying computational 
complexity [25,17,40] or to deal with the combination of statistical data and expert knowledge [35]. We 
focus on probabilistic conditional logics [42,27,22] here. Experts can define intuitive rules of the form ‘if A 
then B with probability x’, which are formalized by conditionals (B|A)[x]. A and B can be arbitrary logical 
formulas and x is a probability that can express an expert’s degree of belief or can be obtained by statistical 
means.

The expert system shell MECore [14] allows the knowledge engineer to enter conditional knowledge bases 
and to accomplish probabilistic reasoning under the principle of optimum entropy [36,22]. A comprehensive 
case study can be found in [3], where a knowledge base for analyzing brain tumor data is designed by 
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combining both expert knowledge and statistical data. One of the most important operations for MECore is 
to adapt the current epistemic state, which is basically represented by a probability distribution, with respect 
to new knowledge. This is accomplished by computing I-projections, i.e., by computing a new epistemic state 
that satisfies the new knowledge and is closest to the old state. The ‘distance’ between two such epistemic 
states is measured by the relative entropy [7].

We report on our ongoing work on improving the efficiency of computing I-projections in the context 
of conditional knowledge bases. In Section 2, we recall the probabilistic logical framework and the basics 
of the principle of optimum entropy as they are needed in the following. In Section 3, we provide some 
intuition for MECore’s original I-projection algorithm (IIP) and a novel implementation based on L-BFGS
[26]. In Section 4, we summarize some approaches to speed up the computation by taking the structure of 
conditional knowledge bases into account [22,13]. We also provide some experimental results to illustrate 
the benefit and shortcomings of different approaches. This article is an extended version of [39].

2. Basics

2.1. Probabilistic conditional logic and optimum entropy

We consider a propositional conditional language L built up over a finite set of propositional variables 
Σ using logical connectives like conjunction and disjunction in the usual way. For formulas ψ, φ ∈ L, we 
abbreviate negation ¬ψ by an overbar ψ̄ and conjunction ψ ∧ φ by juxtaposition ψφ. A possible world is a 
classical logical interpretation ω : Σ → {0, 1} assigning a truth value to each propositional variable. We also 
allow multi-valued variables that are associated with a domain and an interpretation assigns to each such 
variable a value from the corresponding domain. Let Ω denote the set of all possible worlds. An atom a is 
satisfied by ω iff ω(a) = 1. More generally, for a multi-valued variable X, x ∈ domain(X), the multi-valued 
atom X = x is satisfied by ω iff ω(X) = x. The definition is extended to complex formulas in the usual way. 
The classical models Mod(ψ) of a formula ψ are the possible worlds ω ∈ Ω that satisfy ψ.

A probabilistic conditional language over L thus arises as follows: (L|L) := {(ψ|φ)[x] | ψ, φ ∈ L, x ∈ [0, 1]}. 
Intuitively a conditional (ψ|φ)[x] expresses that our belief in ψ given that φ holds is x. A conditional 
knowledge base R ⊂ (L|L) is a set of conditionals.

Example 1. In [3], the brain tumor domain is modeled by 9 propositional variables. Two boolean variables 
warningSymptoms and icpSymptoms indicate the presence of important symptoms. The remaining variables 
are multi-valued. For instance, the 3-valued variable age can take the values le20, 20to80, ge80 representing 
three age groups (age ≤ 20, 20 < age < 80, age ≥ 80). The variable diagnosis can take 11 values cor-
responding to different brain tumor types. The remaining variables model the malignancy of the tumor, 
the physical fitness of the patients, possible therapies, possible complications and possible outcomes for the 
health of the patient after inpatient stay.

The knowledge base contains both statistical knowledge and subjective expert beliefs. The statistical 
knowledge includes empirical frequencies of certain brain tumor types. For instance, the conditionals

(diagnosis = meningeoma | !(age=le20))[0.2]

(diagnosis = medulloblastoma | !(age=le20))[0.07]

express relative frequencies for two brain tumor types among people older than 20 (the exclamation mark 
! expresses negation in MECore). The subjective knowledge includes conditionals like

(diagnosis = glioblastoma | !(age=le20) and warningSymptoms)[0.2]

expressing possible diagnoses for typical states of patients.
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