

Advances in Mathematics 321 (2017) 475-485

A transversal of full outer measure

Ashutosh Kumar^{a,*,1}, Saharon Shelah^{a,b,2}

^a Einstein Institute of Mathematics, The Hebrew University of Jerusalem, Edmond J Safra Campus, Givat Ram, Jerusalem 91904, Israel
^b Department of Mathematics, Rutgers, The State University of New Jersey, Hill

Center-Busch Campus, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA

A R T I C L E I N F O

Article history: Received 21 October 2015 Received in revised form 7 September 2017 Accepted 2 October 2017 Available online xxxx Communicated by Slawomir J. Solecki ABSTRACT

We show that for every partition of a set of reals into countable sets there is a transversal of the same outer measure. © 2017 Elsevier Inc. All rights reserved.

Keywords: Outer measure Forcing

1. Introduction

Our aim is to prove the following.

Theorem 1.1. Suppose $\langle X_{\alpha} : \alpha \in S \rangle$ is a partition of $X \subseteq [0,1]$ into countable sets. Then there exists $Y \subseteq X$ such that $|Y \cap X_{\alpha}| = 1$ for each $\alpha \in S$ and $\mu^{*}(Y) = \mu^{*}(X)$.

 $\begin{array}{l} \label{eq:https://doi.org/10.1016/j.aim.2017.10.008} \\ 0001\text{-}8708/ \textcircled{O} \ 2017 \ Elsevier \ Inc. \ All \ rights \ reserved. \end{array}$

^{*} Corresponding author.

E-mail addresses: akumar@math.huji.ac.il (A. Kumar), shelah@math.huji.ac.il (S. Shelah).

 $^{^1}$ Supported by a Postdoctoral Fellowship at the Einstein Institute of Mathematics funded by European Research Council grant 338821 and by NSF grant No. DMS 1101597.

 $^{^2}$ Partially supported by European Research Council grant 338821 and by NSF grant No. DMS 1101597; Publication No. 1068.

Here μ^* denotes Lebesgue outer measure on \mathbb{R} . For partitions into finite sets, this follows from an old result of Lusin [9] which says that any set of reals can be partitioned into two sets of full outer measure (see Lemma 2.2). Another special case of the above theorem was established in [8]: Every set of reals has a subset of full outer measure that avoids rational distances. The proof given there relied on a theorem of Gitik and Shelah [4–6] which says that forcing with a sigma ideal cannot be isomorphic to a product of random and Cohen forcing (we give another proof of this in Theorem A.1). As a byproduct of our proof, we get a generalization of this theorem to a larger class of forcings (see Lemma 6.1) – For example, an ω -length finite support iteration of random forcing. For background on forcing and generic ultrapowers, we refer the reader to [2,7].

On notation: For a set of reals X, by $\operatorname{env}(X)$ (envelope of X), we mean a G_{δ} set G containing X such that $G \setminus X$ has zero inner measure. All relations involving envelopes are supposed to hold modulo null sets. A subset Y of X has full outer measure in X if $\operatorname{env}(X) = \operatorname{env}(Y)$. If $Y \subseteq X$ and $\operatorname{env}(X) \neq \operatorname{env}(X \setminus Y)$ we say that Y has positive inner measure in X; otherwise, we say that Y has zero inner measure in X. For $T \subseteq {}^{<\omega}2$, define $[T] = \{x \in 2^{\omega} : (\forall n < \omega)(x \upharpoonright n \in T)\}$. For $\sigma \in {}^{<\omega}2$, define $[\sigma] = \{x \in 2^{\omega} : \sigma \preceq x\}$. In forcing, we use the convention that a larger condition is the stronger one – So $p \leq q$ means q extends p. If \mathbb{Q} , \mathbb{P} are forcing notions, we write $\mathbb{Q} \triangleleft \mathbb{P}$ if $\mathbb{Q} \subseteq \mathbb{P}$ and every maximal antichain in \mathbb{Q} is also a maximal antichain in \mathbb{P} . For an ideal \mathcal{I} over a set X, define the following.

- $\mathcal{I}^+ = \mathcal{P}(X) \setminus \mathcal{I};$
- $\operatorname{\mathsf{add}}(\mathcal{I})$ is the least cardinal κ satisfying: there exists $\mathcal{F} \subseteq \mathcal{I}, |\mathcal{F}| \leq \kappa$ and $\bigcup \mathcal{F} \notin \mathcal{I}$;
- For $Y \in \mathcal{I}^+$, $\mathcal{I} \upharpoonright Y = \{W \subseteq Y : W \in \mathcal{I}\}$ is the restriction of \mathcal{I} to Y.

2. A sufficient condition

Without loss of generality, $(\forall \alpha \in S)(|X_{\alpha}| = \aleph_0)$. For each $\alpha \in S$, let $X_{\alpha} = \{x_{\alpha,n} : n < \omega\}$. Put $Y_n = \{x_{\alpha,n} : \alpha \in S\}$. For $W \subseteq S$, write $Y_n \upharpoonright W = \{x_{\alpha,n} : \alpha \in W\}$. Note that Y_n depends on the specific enumeration of X_{α} we fixed.

Claim 2.1. It is enough to show the following.

(*): For every $X \subseteq [0,1]$, for every partition $\langle X_{\alpha} : \alpha \in S \rangle$ of X into \aleph_0 -sized subsets, for every enumeration $X_{\alpha} = \{x_{\alpha,n} : n < \omega\}$ (so we can speak of Y_n 's w.r.t. this enumeration), there is a subset W of S such that either

- (a) Y_0 is null or
- (b) Y₀ ↾ W has positive outer measure and for all n ≥ 1, Y_n ↾ W has zero inner measure in Y_n.

Proof of Claim 2.1. Assume (\star) . It is enough to show that we can strengthen " $Y_0 \upharpoonright W$ has positive outer measure" to " $\mu^{\star}(Y_0 \upharpoonright W) \ge 0.5(\mu^{\star}(Y_0))$ " in (\star) above. For then we can inductively construct a sequence $\langle (W_i, n_i) : i < \omega \rangle$ such that

Download English Version:

https://daneshyari.com/en/article/5778309

Download Persian Version:

https://daneshyari.com/article/5778309

Daneshyari.com