

Contents lists available at ScienceDirect

Advances in Mathematics

Euler class groups and the homology of elementary and special linear groups

Marco Schlichting

Mathematics Institute, Zeeman Building, University of Warwick, Coventry CV4 7AL, UK

ARTICLE INFO

Article history: Received 4 August 2017 Accepted 10 August 2017 Available online xxxx Communicated by Tomasz S. Mrowka

Keywords:

Euler class of a projective module Homology of special linear groups Milnor-Witt K-theory Schur multiplier Matsumoto-Moore Theorem Stability in K-theory

ABSTRACT

We improve homology stability ranges for elementary and special linear groups over rings with many units. Our result implies stability for unstable Quillen K-groups and proves a conjecture of Bass. For commutative local rings with infinite residue fields, we show that the obstruction to further stability is given by Milnor–Witt K-theory. As an application we construct Euler classes of projective modules with values in the cohomology of the Milnor–Witt K-theory sheaf. For d-dimensional commutative noetherian rings with infinite residue fields we show that the vanishing of the Euler class is necessary and sufficient for an oriented projective module P of rank d to split off a rank 1 free direct summand. Along the way we obtain a new presentation of Milnor–Witt K-theory and of symplectic K_2 simplifying the classical Matsumoto–Moore presentation.

© 2017 Elsevier Inc. All rights reserved.

Contents

1.	Introduction	2
2.	The homology of affine groups	6
	Stability in homology and K-theory	
4.	Milnor-Witt K-theory	21

E-mail address: m.schlichting@warwick.ac.uk.

5.	The of	ostruction to further stability	29
	5.1.	Multiplicative properties of the spectral sequence	29
	5.2.	Presentation and decomposability	35
	5.3.	The Steinberg relation and $H_2(SL_2A)$	43
	5.4.	Centrality of $[-1,1]$ and $H_n(SL_nA,SL_{n-1}A)$	50
	5.5.	Prestability	56
6.	Euler •	class groups	59
Apper	ndix A.	The affine B.Gproperty for the Zariski topology	39
Refere	ences .	8	30

1. Introduction

The purpose of this paper is to improve stability ranges in homology and algebraic K-theory of elementary and special linear groups, and to apply these results to construct obstruction classes for projective modules to split off a free direct summand.

Our first result concerns a conjecture of Bass [5, Conjecture XVI on p. 43]. In [5] he conjectured that for a commutative noetherian ring A whose maximal ideal spectrum has dimension d the canonical maps

$$\pi_i BGL_{n-1}^+(A) \to \pi_i BGL_n^+(A)$$

are surjective for $n \geq d+i+1$ and bijective for $n \geq d+i+2$. Here, for a connected space X, we denote by X^+ Quillen's plus-construction with respect to the maximal perfect subgroup of $\pi_1 X$, and we write $BGL_n^+(A)$ for $BGL_n(A)^+$. In this generality, there are counterexamples to Bass' conjecture; see [35, §8]. The best general positive results to date concerning the conjecture are due to van der Kallen [37] and Suslin [34]. They prove that the maps are surjective for $n-1 \geq \max(2i, \operatorname{sr}(A)+i-1)$ and bijective for $n-1 \geq \max(2i, \operatorname{sr}(A)+i)$ where $\operatorname{sr}(A)$ denotes the stable rank of A [39]. Here A need not be commutative nor noetherian.

In this paper we prove Bass' conjecture for rings with many units. Recall [28] that a ring A (always associative with unit) has many units if for every integer $n \geq 1$ there is a family of n central elements of A such that the sum of each non-empty subfamily is a unit. Examples of rings with many units are infinite fields, commutative local rings with infinite residue field and algebras over a ring with many units. Here is our first main result.

Theorem 1.1 (Theorem 3.10). Let A be a ring with many units. Then the natural homomorphism

$$\pi_i BGL_{n-1}^+(A) \to \pi_i BGL_n^+(A)$$

is an isomorphism for $n \ge i + \operatorname{sr}(A) + 1$ and surjective for $n \ge i + \operatorname{sr}(A)$.

Download English Version:

https://daneshyari.com/en/article/5778320

Download Persian Version:

https://daneshyari.com/article/5778320

<u>Daneshyari.com</u>