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We improve homology stability ranges for elementary and
special linear groups over rings with many units. Our result
implies stability for unstable Quillen K-groups and proves a
conjecture of Bass. For commutative local rings with infinite
residue fields, we show that the obstruction to further stability
is given by Milnor-Witt K-theory. As an application we
construct Euler classes of projective modules with values
in the cohomology of the Milnor-Witt K-theory sheaf. For
d-dimensional commutative noetherian rings with infinite
residue fields we show that the vanishing of the Euler class is
necessary and sufficient for an oriented projective module P of
rank d to split off a rank 1 free direct summand. Along the way
we obtain a new presentation of Milnor-Witt K-theory and
of symplectic K2 simplifying the classical Matsumoto—Moore
presentation.
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1. Introduction

The purpose of this paper is to improve stability ranges in homology and algebraic
K-theory of elementary and special linear groups, and to apply these results to construct
obstruction classes for projective modules to split off a free direct summand.

Our first result concerns a conjecture of Bass [5, Conjecture XVI on p. 43]. In [5] he
conjectured that for a commutative noetherian ring A whose maximal ideal spectrum
has dimension d the canonical maps

are surjective for n > d + i + 1 and bijective for n > d + i + 2. Here, for a connected
space X, we denote by XT Quillen’s plus-construction with respect to the maximal
perfect subgroup of m X, and we write BGL; (A) for BGL,(A)". In this generality,
there are counterexamples to Bass’ conjecture; see [35, §8]. The best general positive
results to date concerning the conjecture are due to van der Kallen [37] and Suslin [34].
They prove that the maps are surjective for n — 1 > max(2i,sr(A) 4+ 4 — 1) and bijective
for n—1 > max(2i,sr(A)+14) where sr(A) denotes the stable rank of A [39]. Here A need
not be commutative nor noetherian.

In this paper we prove Bass’ conjecture for rings with many units. Recall [28] that a
ring A (always associative with unit) has many units if for every integer n > 1 there is
a family of n central elements of A such that the sum of each non-empty subfamily is a
unit. Examples of rings with many units are infinite fields, commutative local rings with
infinite residue field and algebras over a ring with many units. Here is our first main
result.

Theorem 1.1 (Theorem 3.10). Let A be a ring with many units. Then the natural homo-
morphism

FiBGLiil(A) — FZBGL:'L_(A)

is an isomorphism for n > i+ sr(A) + 1 and surjective for n > i +sr(A).
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