Advances in Mathematics 320 (2017) 157-209

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Sheets and associated varieties of affine vertex algebras

MATHEMATICS

2

Tomoyuki Arakawa^{a,*}, Anne Moreau^b

 ^a Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan
^b Laboratoire Painlevé, CNRS U.M.R. 8524, 59655 Villeneuve d'Ascq Cedex, France

ARTICLE INFO

Article history: Received 22 January 2017 Received in revised form 7 August 2017 Accepted 17 August 2017 Available online xxxx Communicated by Roman Bezrukavnikov

- MSC: 17B67 17B69 81R10
- Keywords: Sheet Nilpotent orbit Associated variety Affine Kac–Moody algebra Affine vertex algebra Affine W-algebra

ABSTRACT

We show that sheet closures appear as associated varieties of affine vertex algebras. Further, we give new examples of non-admissible affine vertex algebras whose associated variety is contained in the nilpotent cone. We also prove some conjectures from our previous paper and give new examples of lisse affine W-algebras.

© 2017 Elsevier Inc. All rights reserved.

^{*} Corresponding author.

E-mail addresses: arakawa@kurims.kyoto-u.ac.jp (T. Arakawa), anne.moreau@math.univ-lille1.fr (A. Moreau).

1. Introduction

It is known [47] that every vertex algebra V is canonically filtered and therefore it can be considered as a quantization of its associated graded Poisson vertex algebra gr V. The generating subring R_V of gr V is called the Zhu's C₂-algebra of V [56] and has the structure of a Poisson algebra. Its spectrum

$$\tilde{X}_V = \operatorname{Spec} R_V$$

is called the associated scheme of V and the corresponding reduced scheme $X_V =$ Specm R_V is called the associated variety of V([6,10]). Since it is Poisson, the coordinate ring of its arc space $J_{\infty}\tilde{X}_V$ has a natural structure of a Poisson vertex algebra ([6]), and there is a natural surjective homomorphism $\mathbb{C}[J_{\infty}\tilde{X}_V] \to \text{gr } V$, which is in many cases an isomorphism. We have [6] that dim Spec(gr V) = 0 if and only if dim $X_V = 0$, and in this case V is called *lisse* or C_2 -cofinite.

Recently, associated varieties of vertex algebras have caught attention of physicists since it turned out that the associated variety of a vertex algebra coming [14] from a *four* dimensional N = 2 superconformal field theory should coincide with the Higgs branch of the corresponding four dimensional theory ([53]).

In the case that V is the simple affine vertex algebra $V_k(\mathfrak{g})$ associated with a finitedimensional simple Lie algebra \mathfrak{g} at level $k \in \mathbb{C}$, X_V is a Poisson subscheme of \mathfrak{g}^* which is G-invariant and conic, where G is the adjoint group of \mathfrak{g} . Note that on the contrary to the associated variety of a primitive ideal of $U(\mathfrak{g})$, the variety $X_{V_k(\mathfrak{g})}$ is not necessarily contained in the nilpotent cone \mathcal{N} of \mathfrak{g} . In fact, $X_{V_k(\mathfrak{g})} = \mathfrak{g}^*$ for a generic k. On the other hand, $X_{V_k(\mathfrak{g})} = \{0\}$ if and only if $V_k(\mathfrak{g})$ is integrable, that is, k is a non-negative integer. Except for a few cases, the description of X_V is fairly open even for $V = V_k(\mathfrak{g})$, despite of its connection with four dimensional superconformal field theories.

In [7], the first named author showed that $X_{V_k(\mathfrak{g})}$ is the closure of some nilpotent orbit of \mathfrak{g}^* in the case that $V_k(\mathfrak{g})$ is *admissible* [42].

In the previous article [12], we showed that $X_{V_k(\mathfrak{g})}$ is the minimal nilpotent orbit closure in the case that \mathfrak{g} belongs to the Deligne exceptional series [24] and $k = -h^{\vee}/6-1$, where h^{\vee} is the dual Coxeter number of \mathfrak{g} . Note that the level $k = -h^{\vee}/6-1$ is not admissible for the types D_4 , E_6 , E_7 , E_8 .

In all the above cases, $X_{V_k(\mathfrak{g})}$ is a closure of a nilpotent orbit $\mathbb{O} \subset \mathcal{N}$, or $X_{V_k(\mathfrak{g})} = \mathfrak{g}^*$. Therefore it is natural to ask the following.

Question 1. Are there cases when $X_{V_k(\mathfrak{g})} \not\subset \mathcal{N}$ and $X_{V_k(\mathfrak{g})}$ is a proper subvariety of \mathfrak{g}^* ? For example, are there cases when $X_{V_k(\mathfrak{g})}$ is the closure of a non-nilpotent *Jordan class* (cf. §2)?

Identify \mathfrak{g} with \mathfrak{g}^* through a non-degenerate bilinear form of \mathfrak{g} .

Given $m \in \mathbb{N}$, let $\mathfrak{g}^{(m)}$ be the set of elements $x \in \mathfrak{g}$ such that $\dim \mathfrak{g}^x = m$, with \mathfrak{g}^x the centralizer of x in \mathfrak{g} . A subset $\mathbb{S} \subset \mathfrak{g}$ is called a *sheet* of \mathfrak{g} if it is an irreducible

Download English Version:

https://daneshyari.com/en/article/5778323

Download Persian Version:

https://daneshyari.com/article/5778323

Daneshyari.com