

Solvability of Dirac type equations $\stackrel{\diamond}{\approx}$

Qingchun Ji^{a,*}, Ke Zhu^{b,1}

ARTICLE INFO

Article history: Received 6 January 2016 Received in revised form 12 July 2017 Accepted 29 August 2017 Available online xxxx Communicated by the Managing Editors

Keywords: Automatic transversality Cylindrical end J-holomorphic curve \mathbb{Z}_2 -graded Dirac bundle The first eigenvalue Weighted L^2 -estimate

ABSTRACT

This paper develops a weighted L^2 -method for the (half) Dirac equation. For Dirac bundles over closed Riemann surfaces, we give a sufficient condition for the solvability of the (half) Dirac equation in terms of a curvature integral. Applying this to the Dolbeault–Dirac operator, we establish an automatic transversality criteria for holomorphic curves in Kähler manifolds. On compact Riemannian manifolds, we give a new perspective on some well-known results about the first eigenvalue of the Dirac operator, and improve the estimates when the Dirac bundle has a \mathbb{Z}_2 -grading. On Riemannian manifolds with cylindrical ends, we obtain solvability in the L^2 -spaces with suitable exponential weights while allowing mild negativity of the curvature.

© 2017 Elsevier Inc. All rights reserved.

 $^{^{*}}$ Partially supported by NSFC 11671090 and 11322103.

^{*} Corresponding author.

E-mail addresses: qingchunji@fudan.edu.cn (Q. Ji), kzhu@math.harvard.edu, ke.zhu@mnsu.edu (K. Zhu).

 $^{^1}$ Current address: Department of Mathematics and Statistics, Minnesota State University Mankato, Mankato, MN 56001, United States.

1. Introduction

In many geometric problems, it is important to determine the solvability of the linear equation

$$Du = f \tag{1}$$

where D is the Dirac operator on some Dirac bundle. For example, the fundamental Dirac operator on spin manifolds ([1]), the Dolbeault–Dirac operator in Kähler geometry, and the twisted Dirac operator in the normal bundle of instantons (associative submanifolds) in G_2 manifolds ([23]). In general, it is not easy to know when (1) is solvable. For the Dirac operator on spin manifolds, a sufficient condition was given by the positivity of the scalar curvature, dating back to a theorem of Lichnerowicz. However, the positive scalar curvature condition is not always necessary, as the Dirac operator on spin manifolds has the remarkable conformal covariance property ([13]), and a conformal change of metric could make the scalar curvature negative somewhere.

In this paper, starting with the Bochner formula, we establish weighted L^2 -estimates and existence theorems for the Dirac equation, just as Hörmander's weighted L^2 -method for the $\bar{\partial}$ -equation ([15], [16]). In applications of the L^2 -method, it is very important to construct good weight functions from geometric conditions (e.g. [4], [24–26]). Sometimes one can gain "extra positivity" in suitable weighted L^2 -spaces to establish vanishing theorems.

Let $\lambda_{\mathbb{S}}$ be the function on M defined in (18), which pointwisely is the first eigenvalue of some curvature operator. For Dirac equations on 2-dimensional Riemannian manifolds, taking n = 2 in Proposition 2.8, we have

Theorem 1.1. Let \mathbb{S} be a Dirac bundle over a 2-dimensional Riemannian manifold (M, g)and D be the Dirac operator. Suppose there exists a C^2 function $\varphi : M \to \mathbb{R}$ such that $\Delta \varphi + 2\lambda_{\mathbb{S}} \geq 0$ on M. For each $f \in L^2_{\varphi}(\Omega, \mathbb{S})$ with $\int_M \frac{|f|^2}{\Delta \varphi + 2\lambda_{\mathbb{S}}} e^{-\varphi} < \infty$, there exists a section u of \mathbb{S} satisfying

$$Du = f, \ and \ \int_{M} |u|^2 e^{-\varphi} \le \int_{M} \frac{|f|^2}{\Delta \varphi + 2\lambda_{\mathbb{S}}} e^{-\varphi}.$$
 (2)

Our Theorem 1.1 leads to the following solvability criterion of the half Dirac equation on \mathbb{Z}_2 -graded Dirac bundles (see Section 2.1 for definitions).

Corollary 1.2. Let S be a \mathbb{Z}_2 -graded Dirac bundle over a closed 2-dimensional Riemannian manifold M and D^{\pm} be the half Dirac operators, then

$$\lambda_{\min}(D^{\pm}D^{\mp}) \ge \frac{2}{\operatorname{Vol}(M)} \int_{M} \lambda_{\mathbb{S}^{\mp}}, \qquad (3)$$

where $\lambda_{\min}(D^{\pm}D^{\mp})$ is the first eigenvalue of $D^{\pm}D^{\mp}$.

Download English Version:

https://daneshyari.com/en/article/5778331

Download Persian Version:

https://daneshyari.com/article/5778331

Daneshyari.com