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Consider a sequence of partial sums Si = ξ1 + · · · + ξi, 
1 ≤ i ≤ n, starting at S0 = 0, whose increments ξ1, . . . , ξn
are random vectors in Rd, d ≤ n. We are interested in the 
properties of the convex hull Cn := Conv(S0, S1, . . . , Sn). 
Assuming that the tuple (ξ1, . . . , ξn) is exchangeable and a 
certain general position condition holds, we prove that the 
expected number of k-dimensional faces of Cn is given by the 
formula
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n!
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for all 0 ≤ k ≤ d −1, where 
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are Stirling numbers 

of the first and second kind, respectively.
Further, we compute explicitly the probability that for given 
indices 0 ≤ i1 < · · · < ik+1 ≤ n, the points Si1 , . . . , Sik+1

form a k-dimensional face of Conv(S0, S1, . . . , Sn). This is 
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done in two different settings: for random walks with sym-
metrically exchangeable increments and for random bridges 
with exchangeable increments. These results generalize the 
classical one-dimensional discrete arcsine law for the position 
of the maximum due to E. Sparre Andersen. All our formulae 
are distribution-free, that is do not depend on the distribution 
of the increments ξk’s.
The main ingredient in the proof is the computation of the 
probability that the origin is absorbed by a joint convex hull 
of several random walks and bridges whose increments are in-
variant with respect to the action of direct product of finitely 
many reflection groups of types An−1 and Bn. This probabil-
ity, in turn, is related to the number of Weyl chambers of a 
product-type reflection group that are intersected by a linear 
subspace in general position.

© 2017 Elsevier Inc. All rights reserved.

1. Statement of main results

1.1. Introduction

Let ξ1, . . . , ξn be (possibly dependent) random d-dimensional vectors with partial 
sums

Si = ξ1 + · · · + ξi, 1 ≤ i ≤ n, S0 = 0.

The sequence S0, S1, . . . , Sn will be referred to as random walk or, if the additional 
boundary condition Sn = 0 is imposed, a random bridge.

In the one-dimensional case d = 1, Sparre Andersen [23–25] derived remarkable for-
mulae for several functionals of the random walk S0, S1, . . . , Sn including the number of 
positive terms and the position of the maximum. More specifically, assuming that the 
joint distribution of the increments (ξ1, . . . , ξn) is invariant under arbitrary permutations 
and sign changes and that P[Si = 0] = 0 for all 1 ≤ i ≤ n, Sparre Andersen proved in [25, 
Theorem C] the following discrete arcsine law for the position of the maximum:

P [max{S0, . . . , Sn} = Si] = 1
22n

(
2i
i

)(
2n− 2i
n− i

)
, i = 0, . . . , n. (1)

By the symmetry, the same holds for the position of the minimum. Surprisingly, the 
above formula is distribution-free, that is its right-hand side does not depend on the 
distribution of (ξ1, . . . , ξn) provided the symmetric exchangeability and the general posi-
tion assumptions mentioned above are satisfied. Another unexpected consequence of this 
formula is that the maximum is more likely to be attained at i = 0 or i = n rather than 
at i ≈ n/2, as one could naïvely guess. A discussion of the arcsine laws can be found in 
Feller’s book [6, Vol. II, Section XII.8].



Download English Version:

https://daneshyari.com/en/article/5778336

Download Persian Version:

https://daneshyari.com/article/5778336

Daneshyari.com

https://daneshyari.com/en/article/5778336
https://daneshyari.com/article/5778336
https://daneshyari.com

