

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Factorization and non-factorization theorems for pseudocontinuable functions

Konstantin M. Dyakonov a,b,*,1

ARTICLE INFO

Article history: Received 18 May 2017 Received in revised form 1 August 2017 Accepted 22 August 2017 Available online xxxx Communicated by Gilles Pisier

MSC: 30H10 30H35 30J05 46E35 46J15

Keywords:
Hardy space
Inner function
Star-invariant subspace
Lipschitz-Zygmund classes
BMOA

ABSTRACT

Let θ be an inner function on the unit disk, and let $K^p_\theta := H^p \cap \theta \overline{H^0_0}$ be the associated star-invariant subspace of the Hardy space H^p , with $p \geq 1$. While a nontrivial function $f \in K^p_\theta$ is never divisible by θ , it may have a factor h which is "not too different" from θ in the sense that the ratio h/θ (or just the anti-analytic part thereof) is smooth on the circle. In this case, f is shown to have additional integrability and/or smoothness properties, much in the spirit of the Hardy–Littlewood–Sobolev embedding theorem. The appropriate norm estimates are established, and their sharpness is discussed.

© 2017 Elsevier Inc. All rights reserved.

^a Departament de Matemàtiques i Informàtica, IMUB, BGSMath, Universitat de Barcelona, Gran Via 585, E-08007 Barcelona, Spain

^b ICREA, Pg. Lluís Companys 23, E-08010 Barcelona, Spain

^{*} Correspondence to: Departament de Matemàtiques i Informàtica, IMUB, BGSMath, Universitat de Barcelona, Gran Via 585, E-08007 Barcelona, Spain.

E-mail address: konstantin.dyakonov@icrea.cat.

¹ Supported in part by grant MTM2014-51834-P from El Ministerio de Economía y Competitividad (Spain) and grant 2014-SGR-289 from AGAUR (Generalitat de Catalunya).

1. Introduction and results

The pseudocontinuable functions in the paper's title are the noncyclic vectors of the backward shift operator

$$S^*: f \mapsto \frac{f - f(0)}{z}$$

acting on the Hardy space H^2 – or, more generally, H^p (see the definition below) – of the unit disk $\mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$. As usual, "noncyclic" means "lying in some proper (closed) invariant subspace", and a well-known result from [7] tells us that a function f is noncyclic for S^* if and only if it admits a pseudocontinuation to $\mathbb{D}^- := \{z : |z| > 1\}$. The latter means that there exists a meromorphic function of bounded characteristic in \mathbb{D}^- whose boundary values agree with f almost everywhere on the circle $\mathbb{T} := \partial \mathbb{D}$. The other key notion in this paper is smoothness, a phenomenon that can also be described in terms of a "pseudocontinuation", this time understood as pseudoanalytic extension in the sense of Dyn'kin (see [16]). The general principle, as explained in [16], is that a function f holomorphic on \mathbb{D} (and, say, continuous up to the boundary) will be smooth on \mathbb{T} , in some sense or other, if and only if it extends to \mathbb{D}^- as a C^1 function whose Cauchy–Riemann $\overline{\partial}$ -derivative becomes appropriately small – or does not grow too fast – near \mathbb{T} .

Thus, loosely speaking, we are concerned with the interplay of the two kinds of pseudo-continuation. In this connection, we also mention the survey paper [15] which summarizes some of the previous results pertaining to the two topics and discusses the interrelation-ship between them.

Now let us try and describe the setup more accurately. Recall, first of all, that the Hardy space $H^p = H^p(\mathbb{D})$ with 0 is formed by those holomorphic functions <math>f on \mathbb{D} which satisfy

$$\sup_{0 < r < 1} \int_{\mathbb{T}} |f(r\zeta)|^p dm(\zeta) < \infty$$

(we write m for the normalized arclength measure on \mathbb{T}), while $H^{\infty} = H^{\infty}(\mathbb{D})$ stands for the space of bounded holomorphic functions. As is customary, we identify H^p functions with their boundary values (defined almost everywhere on the circle) and treat H^p as a subspace of $L^p = L^p(\mathbb{T}, m)$, endowed with the standard L^p -norm $\|\cdot\|_p$. Further, a function $\theta \in H^{\infty}$ is said to be *inner* if $|\theta| = 1$ almost everywhere on \mathbb{T} .

Beurling's famous theorem characterizes the invariant subspaces of the (forward) shift operator $S: f \mapsto zf$ in H^2 as those of the form θH^2 , where θ is an inner function; see, e.g., [17, Chapter II]. Accordingly, the S^* -invariant (or *star-invariant*) subspaces of H^2 can be written as

$$H^2\ominus\theta H^2=:K^2_\theta,$$

Download English Version:

https://daneshyari.com/en/article/5778337

Download Persian Version:

https://daneshyari.com/article/5778337

<u>Daneshyari.com</u>