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1. Introduction and statements of main results

Fix d,s > 1 and k > 2. We use x to denote the vector (z1,...,74) € R? and i to
denote the d-tuple (i1, ...,4q) of non-negative integers. The monomial z7' ...z} will be
abbreviated to x!. Consider the integer solutions

X1, X2y, X5, ¥1,¥2,---,Ys (11)

of the system of Diophantine equations (often referred to as the Parsell-Vinogradov
system)

b =yl 4yl (1.2)

Here 0 < 41,49, ...,47q < k range through all possible integers such that 1 <4y +io+ ... +
iq < k. For instance, when d = 1, the system (1.2) consists of the following k equations,
known as the classical Vinogradov system

ol =yl 4yl with 1 <i <k, (1.3)

When d = k = 2, the system (1.2) becomes

i1+ T2+ ..+ ZT1s=y11+ Y12+ +Y1s,
To1+ X222+ ...+ T2s=Y21+ Y22+ ... +Y2s,
R R IR R S /T (1.4)
933,1 + x%,z + o+ x%,s = yg,l + 93,2 + o+ y%,sa

T11%21 + 1222 + ... +X1,sT2s = Y1,1Y2,1 + Y1,2Y2,2 + - + Y1,5Y2,s-

For a large N, we let J; 4 1(IN) denote the number of integer solutions (1.1) of the system
of equations (1.2) satisfying 1 < a1 5,..., %45, Y1,j, - Yd,; < N for each 1 < j <s.

As far as we can tell, the investigation of the quantities Js 45(N) for d > 2 was
initiated by Parsell in [12]. This paper also explains some of the motivation behind
considering such quantities. For instance, one motivation comes from counting rational
linear subspaces of a given dimension lying on the hyper-surface defined by

czf e+ cszéC =0, (1.5)

for given ¢y, ..., cs € Z. In order to apply the Hardy—Littlewood circle method, one needs
a good upper bound for Js 41 (N). We mention that a related Diophantine system was
considered earlier in [1].

Parsell, Prendiville and Wooley [13] provided the following lower bound for J 4 x(IN).
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