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An infinitely smooth convex body in Rn is called polynomially 
integrable of degree N if its parallel section functions are 
polynomials of degree N . We prove that the only smooth 
convex bodies with this property in odd dimensions are 
ellipsoids, if N ≥ n −1. This is in contrast with the case of even 
dimensions and the case of odd dimensions with N < n − 1, 
where such bodies do not exist, as it was recently shown by 
Agranovsky.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let K be an infinitely smooth convex body in Rn. The parallel section function of K
in the direction ξ ∈ Sn−1 is defined by
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AK,ξ(t) = voln−1(K ∩ {(x, ξ) = t}) =
∫

(x,ξ)=t

χK(x)dx, t ∈ R,

where χK is the indicator function of K, and (x, ξ) is the scalar product in Rn.
It is clear that if B is the Euclidean ball of radius r centered at the origin, then

AB,ξ(t) = cn(r2 − t2)(n−1)/2,

for |t| ≤ r, where cn is a constant depending on n only. In particular, if n is odd then 
the parallel section function of B is a polynomial of t for every ξ ∈ Sn−1 and every t for 
which K ∩ {x : (x, ξ) = t} is non-empty. This property also holds for ellipsoids.

Definition 1.1. A convex body K (or more generally, a bounded domain) in Rn is called 
polynomially integrable (of degree N) if

AK,ξ(t) =
N∑

k=0

ak(ξ) tk (1.1)

for some integer N , all ξ ∈ Sn−1 and all t for which the set K ∩ {x : (x, ξ) = t} is 
non-empty. Here, ak are functions on the sphere. We assume that the function aN is not 
identically zero.

This concept was introduced by Agranovsky in [1]. He also established a number of 
properties of such bodies. In particular, he showed that there are no bounded polynomi-
ally integrable domains with smooth boundaries in Euclidean spaces of even dimensions. 
In odd dimensions he proved that polynomially integrable bounded domains with smooth 
boundaries are convex, and that there are no polynomially integrable bounded domains 
in Rn with smooth boundaries of degree strictly less than n − 1, while every such body 
with degree n − 1 is an ellipsoid. For polynomially integrable domains of higher degrees 
Agranovsky asks the following.

Problem 1.2. Is it true that in the odd-dimensional space the only polynomially integrable 
domains are ellipsoids?

Problems of this kind go back to Newton [11]. Consider the volume of the “halves” 
of the body cut off by the hyperplane (x, ξ) = t, that is V +

K,ξ(t) =
∫∞
t

AK,ξ(z)dz and 

V −
K,ξ(t) =

∫ t

−∞ AK,ξ(z)dz. A body K is called algebraically integrable if there is a poly-
nomial F such that F (ξ1, . . . , ξn, t, V ±

K,ξ(t)) = 0 for every choice of parameters ξ and t. 
Newton showed that in R2 there are no algebraically integrable convex bodies with 
infinitely smooth boundaries. Arnold asked for extensions of Newton’s result to other 
dimensions and general domains; see problems 1987-14, 1988-13, and 1990-27 in [2]. 
Vassiliev [14] generalized Newton’s result by showing that there are no algebraically 
integrable bounded domains with infinitely smooth boundary in Rn for even n.
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