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We establish sharp conditions on scalar functions and per-
turbations that guarantee Schatten summability of nth order 
operator Taylor remainders. In the special case of dimension 
one, our estimates of these remainders deliver well known clas-
sical estimates of scalar Taylor remainders. We prove that if 
a scalar function f is in the set Cn and a perturbation is in 
the pth Schatten class Sp, p > n, then the respective nth 
order operator Taylor remainder is an element of Sp/n and 
has an estimate like the one in [16]. We construct examples of 
f ∈ Cn and perturbations in Sn such that the nth order Tay-
lor remainder of the respective operator function is not in S1. 
Our construction relies, in particular, on novel dimension de-
pendent estimates for Schatten norms of multilinear Schur 
multipliers from below that are of interest in their own right. 
Our results apply to both self-adjoint and unitary operators.
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1. Introduction

Let A and B be bounded self-adjoint operators and let U be a unitary operator on 
an infinite dimensional Hilbert space H. Let f and ϕ be Cn-functions on the real line R
and on the unit circle T, respectively. This paper presents sharp conditions on f , ϕ, and 
B such that the nth Taylor remainder

Rn,f,A(B) := f(A + B) −
n−1∑
k=0

1
k!

dk

dtk

∣∣∣∣
t=0

f(A + tB) (1.1)

in the self-adjoint case or

Qn,ϕ,U (B) := ϕ(eiBU) −
n−1∑
k=0

1
k!

dk

dtk

∣∣∣∣
t=0

ϕ(eitBU) (1.2)

in the unitary case belongs to a Schatten class. It also presents sharp estimates that 
these remainders satisfy.

Our first main result (Theorem 4.1) shows that when the perturbation B is in the 
Schatten class Sp with p > n and f is in Cn(R), then the remainder Rn,f,A(B) belongs 
to Sp/n and has an estimate analogous to the classical estimate for functions of scalars.

Our second main result (Theorem 5.1) shows that the above assumption on B to be 
in Sp with p > n is sharp, that is, there exist a Cn-function f and self-adjoint bounded 
operators A and B ∈ Sn such that Rn,f,A(B) /∈ S1.

Completely analogous results are also established for Qn,ϕ,U (B) in Theorems 4.2
and 5.11.

The results of Theorems 4.1 and 4.2 substantially sharpen up to date conditions on 
f and ϕ guaranteeing

Rn,f,A, Qn,ϕ,U : Sp �→ Sp/n, p > n. (1.3)

It followed from [14] and [18] that (1.3) holds for f in the intersection of Besov classes 
Bn

∞1(R) ∩B1
∞1(R) and ϕ in Bn

∞1(T), while we prove (1.3) for f ∈ Cn(R) and ϕ ∈ Cn(T). 
The estimates for the remainders obtained in Theorems 4.1 and 4.2 extend the respective 
estimates in [3,1,12,16,17,15,19] to arbitrary f ∈ Cn(R) and ϕ ∈ Cn(T), n ∈ N.

The results of Theorems 5.1 and 5.11 substantially extend the results of [5,6], where 
only the special case n = 2 was treated. Techniques of this paper ensure a unified 
treatment of all self-adjoint and unitary cases for every n � 2. Observe also that the 
counterexample in the case n = 1 is constructed in [11] (see also [8,13,24]). We note, in 
passing, that the question that motivated the example in [9] also led to the introduction 
of so-called operator-Lipschitz functions, whose detailed study can be found in the recent 
survey [2].

In Theorem 2.3 we establish an estimate from below for a Schatten norm of a mul-
tilinear Schur multiplier via an estimate for a linear one. This reduction implies, in 
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