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Let K be a self-similar set satisfying the open set condition.
Following Kaimanovich’s elegant idea [25], it has been proved
that on the symbolic space X of K a natural augmented
tree structure € exists; it is hyperbolic, and the hyperbolic
boundary Oy X with the Gromov metric is Holder equivalent
to K. In this paper we consider certain reversible random
walks with return ratio 0 < A < 1 on (X, ¢€). We show
that the Martin boundary M can be identified with 0y X
and K. With this setup and a device of Silverstein [41], we
obtain precise estimates of the Martin kernel and the Naim
kernel in terms of the Gromov product. Moreover, the Naim
kernel turns out to be a jump kernel satisfying the estimate
O(&,m) =< |€ — n|~(@*8) | where « is the Hausdorff dimension
of K and 8 depends on A. For suitable 3, the kernel defines a
regular non-local Dirichlet form on K. This extends the results
of Kigami [27] concerning random walks on certain trees with
Cantor-type sets as boundaries (see also [5]).
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1. Introduction

Let D be the open unit disk, and let T be the boundary circle parameterized by
{6:0<0 <27} Let

Ep(u,v) :/Vu(x)Vv(x)d:E (1.1)

D

be the standard Dirichlet form on . In classical analysis, it is well-known that a function
¢ € LY(T) can be extended to a harmonic functions on D via the Poisson integral

(Hp)(z) = / o(0)K (z,0)d0,  z €D,

T

where K(x,#) is the Poisson kernel. Furthermore, there is an induced Dirichlet form on
T defined by

Er(p, ) = Ep(Hp, Hi).

Indeed, it can be shown that

: 1 ,
(o) = 157 / / MO ) Gy W0 (12)

2

This integral is called the Douglas integral (see [14, Section 1.2]). From the probabilistic
point of view, the Dirichlet form in (1.1) is associated with a Brownian motion on . The
hitting distribution of the Brownian motion at the boundary T (starting from 0) is the
uniform distribution 22; the induced Dirichlet form in (1.2) corresponds to the reflecting
Brownian motion on D tlme changed by its local time on T, and defines a jump process
on T which is a Cauchy process [6].

The above consideration has a counterpart in Markov chain theory. Let {Z,}32, be
a transient Markov chain on an infinite discrete set X with transition probability P
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