

Contents lists available at ScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

Random walks and induced Dirichlet forms on self-similar sets **

Shi-Lei Kong a,*, Ka-Sing Lau a, Ting-Kam Leonard Wong b

Department of Mathematics, The Chinese University of Hong Kong, Hong Kong
 Department of Mathematics, University of Southern California, Los Angeles,
 CA 90089, USA

ARTICLE INFO

Article history:
Received 9 June 2016
Received in revised form 14
September 2017
Accepted 15 September 2017
Available online xxxx
Communicated by Kenneth Falconer

MSC: primary 28A80, 60J10 secondary 60J50

Keywords:
Dirichlet form
Hyperbolic boundary
Martin boundary
Naïm kernel
Self-similar set
Reversible random walk

ABSTRACT

Let K be a self-similar set satisfying the open set condition. Following Kaimanovich's elegant idea [25], it has been proved that on the symbolic space X of K a natural augmented tree structure & exists; it is hyperbolic, and the hyperbolic boundary $\partial_H X$ with the Gromov metric is Hölder equivalent to K. In this paper we consider certain reversible random walks with return ratio $0 < \lambda < 1$ on (X, \mathfrak{E}) . We show that the Martin boundary \mathcal{M} can be identified with $\partial_H X$ and K. With this setup and a device of Silverstein [41], we obtain precise estimates of the Martin kernel and the Naïm kernel in terms of the Gromov product. Moreover, the Naïm kernel turns out to be a jump kernel satisfying the estimate $\Theta(\xi,\eta) \approx |\xi-\eta|^{-(\alpha+\beta)}$, where α is the Hausdorff dimension of K and β depends on λ . For suitable β , the kernel defines a regular non-local Dirichlet form on K. This extends the results of Kigami [27] concerning random walks on certain trees with Cantor-type sets as boundaries (see also [5]).

© 2017 Elsevier Inc. All rights reserved.

 $^{^{\}pm}$ The research is supported in part by the HKRGC grant and the NNSF of China (No. 11371382).

^{*} Corresponding author.

E-mail addresses: slkong@math.cuhk.edu.hk (S.-L. Kong), kslau@math.cuhk.edu.hk (K.-S. Lau), tkleonardwong@gmail.com (T.-K.L. Wong).

Contents

1.	Introduction	1100
2.	Preliminaries	1105
3.	Self-similar sets and augmented trees	1108
4.	Constant return ratio and quasi-natural RW	1113
5.	Martin boundary and hitting distribution	1119
6.	Estimation of the Naïm kernel	1124
7.	Induced Dirichlet forms	1127
Ackno	owledgments	1132
Refere	ences	1132

1. Introduction

Let \mathbb{D} be the open unit disk, and let \mathbb{T} be the boundary circle parameterized by $\{\theta: 0 \leq \theta < 2\pi\}$. Let

$$\mathcal{E}_{\mathbb{D}}(u,v) = \int_{\mathbb{D}} \nabla u(x) \nabla v(x) dx \tag{1.1}$$

be the standard Dirichlet form on \mathbb{D} . In classical analysis, it is well-known that a function $\varphi \in L^1(\mathbb{T})$ can be extended to a harmonic functions on \mathbb{D} via the Poisson integral

$$(H\varphi)(x) = \int\limits_{\mathbb{T}} \varphi(\theta) K(x,\theta) d\theta, \qquad x \in \mathbb{D},$$

where $K(x, \theta)$ is the Poisson kernel. Furthermore, there is an induced Dirichlet form on \mathbb{T} defined by

$$\mathcal{E}_{\mathbb{T}}(\varphi,\psi) = \mathcal{E}_{\mathbb{D}}(H\varphi,H\psi).$$

Indeed, it can be shown that

$$\mathcal{E}_{\mathbb{T}}(\varphi,\psi) = \frac{1}{16\pi} \int_{\mathbb{T}} \int_{\mathbb{T}} (\varphi(\theta) - \varphi(\theta')) (\psi(\theta) - \psi(\theta')) \frac{1}{\sin^2(\frac{\theta - \theta'}{2})} d\theta d\theta'. \tag{1.2}$$

This integral is called the *Douglas integral* (see [14, Section 1.2]). From the probabilistic point of view, the Dirichlet form in (1.1) is associated with a Brownian motion on \mathbb{D} . The hitting distribution of the Brownian motion at the boundary \mathbb{T} (starting from 0) is the uniform distribution $\frac{d\theta}{2\pi}$; the induced Dirichlet form in (1.2) corresponds to the reflecting Brownian motion on $\overline{\mathbb{D}}$ time-changed by its local time on \mathbb{T} , and defines a jump process on \mathbb{T} which is a Cauchy process [6].

The above consideration has a counterpart in Markov chain theory. Let $\{Z_n\}_{n=0}^{\infty}$ be a transient Markov chain on an infinite discrete set X with transition probability P.

Download English Version:

https://daneshyari.com/en/article/5778350

Download Persian Version:

https://daneshyari.com/article/5778350

<u>Daneshyari.com</u>