Advances in Mathematics 318 (2017) 191-232

Bases for cluster algebras from orbifolds

Department of Mathematical Sciences, Durham University, Science Laboratories, South Road, Durham, DH1 3LE, UK

ARTICLE INFO

Article history: Received 5 April 2016 Received in revised form 21 June 2017 Accepted 26 July 2017 Available online xxxx Communicated by Michel Van den Bergh

ABSTRACT

We generalize the construction of the bracelet and bangle bases defined in [36] and the band basis defined in [43] to cluster algebras arising from orbifolds. We prove that the bracelet bases are positive, and the bracelet basis for the affine cluster algebra of type $C_n^{(1)}$ is atomic. We also show that cluster monomial bases of all skew-symmetrizable cluster algebras of finite type are atomic.

© 2017 Elsevier Inc. All rights reserved.

Keywords: Cluster algebra Unfolding Atomic basis Skein relations

Contents

1.	Introduction	192
2.	Basics on cluster algebras	194
3.	Cluster algebras from surfaces and orbifolds	197
4.	Unfoldings and curves on orbifolds	202
5.	Skein relations on orbifolds	207
6.	Bases \mathcal{B}° , \mathcal{B}^{σ} and \mathcal{B} on orbifolds	218
7.	Skein relations and elements of \mathcal{B}°	220
8.	Linear independence of \mathcal{B}°	221

AF was partially supported by EPSRC grant EP/N005457/1.

^{*} Corresponding author.

E-mail addresses: anna.felikson@durham.ac.uk (A. Felikson), pavel.tumarkin@durham.ac.uk (P. Tumarkin).

9.	Positivity of $\mathcal B$	225
10.	Atomic bases for $C_n^{(1)}$ and finite type	226
Refere	ences	230

1. Introduction

Cluster algebras were introduced by Fomin and Zelevinsky [25] in the effort to understand a construction of canonical bases by Lusztig [34] and Kashiwara [30]. A cluster algebra is a commutative ring with a distinguished set of generators called *cluster variables*. Cluster variables are grouped into overlapping finite collections of the same cardinality called *clusters* connected by local transition rules which are determined by a skew-symmetrizable *exchange matrix* associated with each cluster, see Section 2 for precise definitions.

One of the central problems in cluster algebras theory is a construction of good bases. It was conjectured in [25] that these bases should contain cluster monomials, i.e. all products of cluster variables belonging to every single cluster. Linear independence of cluster monomials in skew-symmetric case was proved by Cerulli Irelli, Keller, Labardini-Fragoso and Plamondon in [7], for a general skew-symmetrizable case linear independence was recently proved by Gross, Hacking, Keel and Kontsevich in [28]. In the finite type cluster monomials themselves form a basis (Caldero and Keller [1]).

Bases containing cluster monomials were constructed for various types of cluster algebras. These include ones by Sherman and Zelevinsky [41] (rank two affine type), Cerulli Irelli and Esposito [4,6] (affine type \tilde{A}_2), Ding, Xiao and Xu [12] (affine type), Dupont [13,15], Geiss, Leclerc and Schröer [27], Plamondon [40] (generic bases for acyclic types), Lee, Li and Zelevinsky (greedy bases in rank two algebras).

In [36] Musiker, Schiffler and Williams constructed two types of bases (bangle basis \mathcal{B}° and bracelet basis \mathcal{B}) for cluster algebras originating from unpunctured surfaces [23, 24,20]. A band basis (we call it \mathcal{B}^{σ}) was introduced by D. Thurston in [43]. All the three bases are parametrized by collections of mutually non-intersecting arcs and closed loops, and all their elements are positive, i.e. the expansion of any basis element in any cluster is a Laurent monomial with non-negative coefficients.

In the present paper, we extend the construction of all the three bases to cluster algebras originating from orbifolds.

Theorem 1.1. Let \mathcal{A} be a cluster algebra with principal coefficients constructed by an unpunctured orbifold with at least two boundary marked points. Then \mathcal{B} , \mathcal{B}^{σ} and \mathcal{B}° are bases of \mathcal{A} .

Our main tools are the tropical duality by Nakanishi and Zelevinsky [38], and the theory of unfoldings developed in [18,19]. The notion of an unfolding was introduced by Zelevinsky, it provides a reduction of problems on (certain) skew-symmetrizable cluster algebras to appropriate skew-symmetric ones. In our case, unfoldings allow us to treat

Download English Version:

https://daneshyari.com/en/article/5778368

Download Persian Version:

https://daneshyari.com/article/5778368

Daneshyari.com