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We introduce the so called convex body valued sparse oper-
ators, which generalize the notion of sparse operators to the 
case of spaces of vector valued functions.
We prove that Calderón–Zygmund operators as well as Haar 
shifts and paraproducts can be dominated by such operators. 
By estimating sparse operators we obtain weighted estimates 
with matrix weights. We get two weight A2–A∞ estimates, 
that in the one weight case give us the estimate

‖T‖L2(W )→L2(W ) ≤ C[W ]1/2A2
[W ]A∞ ≤ C[W ]3/2A2

where T is either Calderón–Zygmund operator (with modulus 
of continuity satisfying the Dini condition), or a Haar shift or 
a paraproduct.
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Notation

|Q| for Q ⊂ RN denotes its N -dimensional Lebesgue measure;
D a dyadic lattice. We consider all “translations” of the standard dyadic lattice;
〈f〉Q average of the function f over Q, 〈f〉Q := |Q|−1 ´

Q
f(x)dx;

〈〈f〉〉Q “convex body valued” average of a functions f with values in Rd, see Sec-
tion 2.2;

‖ · ‖, · norm; since we are dealing with matrix- and operator-valued functions we will 
use the symbol ‖ · ‖ (usually with a subscript) for the norm in a functions 
space, while · is used for the norm in the underlying vector (operator) space. 
Thus for a vector-valued function f the symbol ‖f‖2 denotes its L2-norm, but 
the symbol f stands for the scalar-valued function x �→ f(x) ;

1. Motivations, definitions and results

This paper started as an (unsuccessful) attempt to prove the so-called A2-conjecture 
for the weighted estimates with matrix weights.

Recall that a (d-dimensional) matrix weight on RN is a locally integrable function on 
RN with values in the set of positive-semidefinite d × d matrices. The weighted space 
L2(W ) is defined as the space of all measurable functions f : RN → Fd, (here F = R, or 
F = C) for which

‖f‖2
L2(W ) :=

ˆ
(W (x)f(x), f(x))dx < ∞ ;

here (·, ·) means the usual duality in Fd.
A matrix weight W is said to satisfy the matrix A2 condition (write W ∈ (A2)) if

[W ]A2
:= sup

Q
〈W 〉1/2Q 〈W−1〉1/2Q

2 < ∞ .

The quantity [W ]A2
is called the A2 characteristic of the weight W .
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