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‘We introduce the so called convex body valued sparse oper-
ators, which generalize the notion of sparse operators to the
case of spaces of vector valued functions.

‘We prove that Calder6n—Zygmund operators as well as Haar
shifts and paraproducts can be dominated by such operators.
By estimating sparse operators we obtain weighted estimates
with matrix weights. We get two weight As—A., estimates,
that in the one weight case give us the estimate

IT 2wy 2wy < CIWIRZ[W]a. < CIWIY?

where T is either Calderén—Zygmund operator (with modulus
of continuity satisfying the Dini condition), or a Haar shift or
a paraproduct.
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Notation
Q| for @ C RY denotes its N-dimensional Lebesgue measure;
9 a dyadic lattice. We consider all “translations” of the standard dyadic lattice;
(fo average of the function f over @, (f)g :=|Q|” fQ
(o “convex body valued” average of a functlons f with values in R, see Sec-
tion 2.2;
| - Il 1 - | norm; since we are dealing with matrix- and operator-valued functions we will
use the symbol || - || (usually with a subscript) for the norm in a functions
space, while | - | is used for the norm in the underlying vector (operator) space.

Thus for a vector-valued function f the symbol || f||2 denotes its L?-norm, but
the symbol | f] stands for the scalar-valued function = — | f(x)];

1. Motivations, definitions and results

This paper started as an (unsuccessful) attempt to prove the so-called As-conjecture
for the weighted estimates with matrix weights.

Recall that a (d-dimensional) matrix weight on R¥ is a locally integrable function on
RY with values in the set of positive-semidefinite d x d matrices. The weighted space
L?(W) is defined as the space of all measurable functions f : RN — F? (here F = R, or
F = C) for which

1 == / (W (@) f (), f(2))de < oo:

here (-,-) means the usual duality in F?.
A matrix weight W is said to satisfy the matrix Ao condition (write W € (Ay)) if

(Wlas i= sup | (W Vg W H G2 < oo

The quantity [W]a, is called the Ay characteristic of the weight W.
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