A note on Willmore minimizing Klein bottles in Euclidean space

Jonas Hirsch ${ }^{\text {a }}$, Elena Mäder-Baumdicker ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 256, 34136 Trieste, Italy
${ }^{\text {b }}$ Karlsruhe Institute of Technology, Institute for Analysis, Englerstr. 2, 76131
Karlsruhe, Germany

A R T I C L E I N F O

Article history:

Received 17 June 2016
Accepted 10 August 2017
Available online 21 August 2017
Communicated by the Managing Editors

Keywords:
Willmore surfaces
Klein bottle
Eigenvalue
Extremal metric

Abstract

We show that $\varphi \circ \tilde{\tau}_{3,1}: K \rightarrow \mathbb{R}^{4} \times\{0\}^{n-4}$ is the unique minimizer among immersed Klein bottles in its conformal class, where $\varphi: \mathbb{S}^{4} \rightarrow \mathbb{R}^{4}$ is a stereographic projection and $\tilde{\tau}_{3,1}$ is the bipolar surface of Lawson's $\tau_{3,1}$-surface [11]. We conjecture that $\varphi \circ \tilde{\tau}_{3,1}$ is the unique minimizer among immersed Klein bottles into $\mathbb{R}^{n}, n \geq 4$, whose existence the authors and P. Breuning proved in [2].

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let M be a closed manifold of dimension two. The Willmore energy of an immersed surface $f: M \rightarrow \mathbb{R}^{n}, n \geq 3$, is defined by

$$
\mathcal{W}(f):=\frac{1}{4} \int_{M}|H|^{2} d \mu_{g}
$$

[^0]http://dx.doi.org/10.1016/j.aim.2017.08.021
0001-8708/® 2017 Elsevier Inc. All rights reserved.
where H is the mean curvature vector of the surface, $g:=f^{\sharp} \delta_{\mathbb{R}^{n}}$ the induced metric on M and $d \mu_{g}$ the induced area measure.

Willmore [19] proved 1965 that $\mathcal{W}(f) \geq 4 \pi$ holds for any closed surface in \mathbb{R}^{3} with equality for round spheres. He also computed the Willmore energy of certain tori and found out that the minimum of the Willmore energy among these tori is attained by a stereographic projection of the Clifford torus (with energy $2 \pi^{2}$). He conjectured that every orientable surface in \mathbb{R}^{3} of genus greater than zero satisfies

$$
\mathcal{W}(f) \geq 2 \pi^{2}
$$

This Willmore conjecture was proved by Marques and Neves [13]. Before the proof of Marques and Neves appeared a lot of partial results were obtained concerning the Willmore conjecture, see [14] and the references therein.

For non-orientable surfaces the number of results concerning the Willmore energy are quite limited. Li and Yau proved in [12] that $W(f) \geq 6 \pi$ for any immersed $\mathbb{R} P^{2}$ in $\mathbb{R}^{n}, n \geq 4$, with equality if and only if $f: \mathbb{R} P^{2} \rightarrow \mathbb{R}^{4}$ is the Veronese embedding. As there always is a triple point for immersed $\mathbb{R} P^{2}$ in \mathbb{R}^{3} [1] an inequality from [12] gives $\mathcal{W}(f) \geq 12 \pi$ with equality for example for Boy's surface $[9,3]$.

In [2], the authors proved together with P. Breuning that the infimum among all immersed Klein bottles in $\mathbb{R}^{n}, n \geq 4$ is attained by a smooth embedding. The value of this minimum is strictly less than 8π. In this paper, we prove that it is less or equal to $6 \pi \mathrm{E}\left(\frac{2 \sqrt{2}}{3}\right) \approx 6.682 \pi$, where $\mathrm{E}($.$) is the complete elliptic integral of second kind. Our$ first result is the following:

Theorem 1.1. Consider the bipolar surface of Lawson's $\tau_{3,1}$ torus and denote it by $\tilde{\tau}_{3,1}$. It is known that the surface $\tilde{\tau}_{3,1}$ is a minimally embedded Klein bottle in \mathbb{S}^{4} [10]. Let $\varphi: \mathbb{S}^{4} \rightarrow \mathbb{R}^{4}$ be a stereographic projection. Then we have that $\varphi \circ \tilde{\tau}_{3,1}: K \rightarrow \mathbb{R}^{4} \times\{0\}^{n-4}$, $n \geq 4$, is the minimizer of the Willmore energy in its conformal class, i.e. we have that

$$
\begin{equation*}
\mathcal{W}(f) \geq 6 \pi \mathrm{E}\left(\frac{2 \sqrt{2}}{3}\right) \approx 6.682 \pi \tag{1}
\end{equation*}
$$

for every immersed Klein bottle $f: K \rightarrow \mathbb{R}^{n}, n \geq 4$, that is conformal to $\varphi \circ \tilde{\tau}_{3,1}$. Here, $\mathrm{E}($.$) is the complete elliptic integral of second kind. Furthermore, equality in (1) for an$ immersed Klein bottle f conformal to $\varphi \circ \tilde{\tau}_{3,1}$ implies that f is the surface $\varphi \circ \tilde{\tau}_{3,1}$ up to conformal diffeomorphisms of \mathbb{R}^{n}.

In the proof, we use the conformal volume studied by Li and Yau [12] and a result by Jakobson, Nadirashvili and Polterovich [8] who found out that $\tilde{\tau}_{3,1}$ is embedded by first eigenfunctions of the Laplacian. El Soufi, Giacomini and Jazar [4] proved that the metric on $\tilde{\tau}_{3,1}$ is the only metric on a Klein bottle that is critical for the first eigenvalue. This implies

https://daneshyari.com/en/article/5778421

Download Persian Version:

https://daneshyari.com/article/5778421

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: jonas.hirsch@sissa.it (J. Hirsch), elena.maeder-baumdicker@kit.edu (E. Mäder-Baumdicker).

