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We show that ϕ ◦ τ̃3,1 : K → R4 × {0}n−4 is the unique 
minimizer among immersed Klein bottles in its conformal 
class, where ϕ : S4 → R4 is a stereographic projection 
and τ̃3,1 is the bipolar surface of Lawson’s τ3,1-surface [11]. 
We conjecture that ϕ ◦ τ̃3,1 is the unique minimizer among 
immersed Klein bottles into Rn, n ≥ 4, whose existence the 
authors and P. Breuning proved in [2].

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let M be a closed manifold of dimension two. The Willmore energy of an immersed 
surface f : M → R

n, n ≥ 3, is defined by

W(f) := 1
4

∫
M

|H|2dμg,
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where H is the mean curvature vector of the surface, g := f �δRn the induced metric on 
M and dμg the induced area measure.

Willmore [19] proved 1965 that W(f) ≥ 4π holds for any closed surface in R3 with 
equality for round spheres. He also computed the Willmore energy of certain tori and 
found out that the minimum of the Willmore energy among these tori is attained by 
a stereographic projection of the Clifford torus (with energy 2π2). He conjectured that 
every orientable surface in R3 of genus greater than zero satisfies

W(f) ≥ 2π2.

This Willmore conjecture was proved by Marques and Neves [13]. Before the proof of 
Marques and Neves appeared a lot of partial results were obtained concerning the Will-
more conjecture, see [14] and the references therein.

For non-orientable surfaces the number of results concerning the Willmore energy are 
quite limited. Li and Yau proved in [12] that W (f) ≥ 6π for any immersed RP 2 in 
R

n, n ≥ 4, with equality if and only if f : RP 2 → R
4 is the Veronese embedding. As 

there always is a triple point for immersed RP 2 in R3 [1] an inequality from [12] gives 
W(f) ≥ 12π with equality for example for Boy’s surface [9,3].

In [2], the authors proved together with P. Breuning that the infimum among all 
immersed Klein bottles in Rn, n ≥ 4 is attained by a smooth embedding. The value of 
this minimum is strictly less than 8π. In this paper, we prove that it is less or equal to 
6πE

(
2
√

2
3

)
≈ 6.682π, where E(.) is the complete elliptic integral of second kind. Our 

first result is the following:

Theorem 1.1. Consider the bipolar surface of Lawson’s τ3,1 torus and denote it by τ̃3,1. 
It is known that the surface τ̃3,1 is a minimally embedded Klein bottle in S4 [10]. Let 
ϕ : S4 → R

4 be a stereographic projection. Then we have that ϕ ◦ τ̃3,1 : K → R
4×{0}n−4, 

n ≥ 4, is the minimizer of the Willmore energy in its conformal class, i.e. we have that

W(f) ≥ 6πE
(

2
√

2
3

)
≈ 6.682π (1)

for every immersed Klein bottle f : K → R
n, n ≥ 4, that is conformal to ϕ ◦ τ̃3,1. Here, 

E(.) is the complete elliptic integral of second kind. Furthermore, equality in (1) for an 
immersed Klein bottle f conformal to ϕ ◦ τ̃3,1 implies that f is the surface ϕ ◦ τ̃3,1 up to 
conformal diffeomorphisms of Rn.

In the proof, we use the conformal volume studied by Li and Yau [12] and a result 
by Jakobson, Nadirashvili and Polterovich [8] who found out that τ̃3,1 is embedded by 
first eigenfunctions of the Laplacian. El Soufi, Giacomini and Jazar [4] proved that the 
metric on τ̃3,1 is the only metric on a Klein bottle that is critical for the first eigenvalue. 
This implies
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