#### Advances in Mathematics 319 (2017) 224–250 $\,$



## Full measure reducibility and localization for quasiperiodic Jacobi operators: A topological criterion



Rui Han<sup>\*</sup>, Svetlana Jitomirskaya

#### ARTICLE INFO

Article history: Received 18 August 2016 Received in revised form 20 June 2017 Accepted 12 August 2017 Available online 1 September 2017 Communicated by Vadim Kaloshin

Keywords: Quasiperiodic Jacobi matrix Spectral transition Extended Harper's model

#### ABSTRACT

We establish a topological criterion for connection between reducibility to constant rotations and dual localization, for the general family of analytic quasiperiodic Jacobi operators. As a corollary, we obtain the sharp arithmetic phase transition for the extended Harper's model in the positive Lyapunov exponent region.

© 2017 Elsevier Inc. All rights reserved.

### 1. Introduction

In this paper we study the general class of Jacobi operators

$$(H_c(\theta)u)_n = c(\theta + n\alpha)u_{n+1} + \tilde{c}(\theta + (n-1)\alpha)u_{n-1} + v(\theta + n\alpha)u_n, \qquad (1.1)$$

where  $c(\theta) = \sum_k \hat{c}_k e^{2\pi i k(\theta + \frac{\alpha}{2})} \in C^{\omega}(\mathbb{T}), \ \tilde{c}(\cdot) \in C^{\omega}(\mathbb{T}), \ \tilde{c}(\theta) = \overline{c(\theta)}$  on  $\mathbb{T}$ , and  $v(\theta) = \sum_k \hat{v}_k e^{2\pi i k\theta} \in C^{\omega}(\mathbb{T})$ . We will assume  $\hat{v}_k = \overline{\hat{v}_{-k}}, \ \hat{c}_k \in \mathbb{R}$ . Such operators arise as effective Hamiltonians in a tight-binding description of a crystal subject to a weak external magnetic field, with c, v reflecting the lattice geometry and the allowed electron

\* Corresponding author.

E-mail addresses: rhan2@uci.edu (R. Han), szhitomi@math.uci.edu (S. Jitomirskaya).

hopping between lattice sites. The prime example, both in math and in physics literature, is the extended Harper's model, see (1.5). Notice that when  $c(\theta) \equiv 1$  (this corresponds to the nearest neighbor hopping on a square lattice) we get the Schrödinger operator

$$(H(\theta)u)_n = u_{n+1} + u_{n-1} + v(\theta + n\alpha)u_n.$$
(1.2)

The Aubry dual of  $H_c$  is an operator  $\tilde{H}_c$  defined by

$$(\tilde{H}_c(x)u)_m = \sum_{m'} d_{m'}(c,v)(x)u_{m-m'},$$
(1.3)

where  $d_{m'}(c,v)(x) = \hat{c}_{m'}e^{2\pi i(x-\frac{m'}{2}\alpha)} + \hat{v}_{-m'} + \hat{c}_{-m'}e^{-2\pi i(x-\frac{m'}{2}\alpha)}.$ 

The Aubry duality can be explained by the magnetic nature and corresponding gauge invariance of operators  $H_c$  [26] and has been formulated and explored on different levels, e.g. [26], [12], [5]. The dynamical formulation of Aubry duality is an observation that if  $\tilde{H}_c(\theta)$  has an eigenvalue at E with respective eigenvector  $\{u_n\}$ , then, considering its Fourier transform,  $u(x) := \sum_{n \in \mathbb{Z}} u_n e^{2\pi i n x} \in L^2(\mathbb{T}) \setminus \{0\}$  and letting

$$M_{\theta}(x) = \begin{pmatrix} u(x) & u(-x) \\ e^{-2\pi i \theta} u(x-\alpha) & e^{2\pi i \theta} u(-(x-\alpha)) \end{pmatrix}, \qquad (1.4)$$

 $M_{\theta}$  provides an  $L^2$  semiconjugacy between the transfermatrix cocycle of  $H_c$  and the rotation  $R_{\theta} = \begin{pmatrix} e^{2\pi i\theta} & 0\\ 0 & e^{-2\pi i\theta} \end{pmatrix}$ . For  $\theta$  that are not  $\alpha$ -rational, det  $M_{\theta}(x)$  doesn't vanish for a.e. x [6], leading to reducibility of the transfermatrix cocycle of  $H_c$  to a constant rotation  $R_{\theta}$ . In particular, pure point spectrum for a.e.  $\theta$  of  $\tilde{H}_c(\theta)$  leads to reducibility for cocycles of  $H_c$  for a.e. E with respect to the density of states [27], [6], with the quality of reducibility governed by the rate of decay of  $u_n$ . As there are well developed methods to prove localization (thus exponential decay of the eigenfunctions) in various applications, this can be used to establish further interesting consequences [5,6,14].

With the development of recent powerful methods [7,4,2] to establish non-perturbative reducibility directly and independently of localization for the dual model, the reverse direction: obtaining localization for  $\tilde{H}_c$  from reducibility of  $H_c$ , first used in a more restricted form back in [9], started gaining prominence. In the Schrödinger case, reducibility provides a direct construction of eigenfunctions for the dual model (with the decay governed by the quality of reducibility), so their completeness becomes the main issue. This has been considered a nontrivial question even for the almost Mathieu family. It had been conjectured for a long time [16] that  $\lambda = e^{\beta}$ , where  $\beta$  is the upper rate of exponential growth of denominators of continued fractions approximants to  $\alpha$  (see (2.1)), is the phase transition line from purely singular continuous spectrum to pure point spectrum. A combination of the almost reducibility conjecture [2] and techniques of [4,15,29] led to establishing reducibility throughout the dual of the entire conjectured localization region, yet completeness of the resulting eigenfunctions remained a problem. This was Download English Version:

# https://daneshyari.com/en/article/5778427

Download Persian Version:

https://daneshyari.com/article/5778427

Daneshyari.com